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- PREFACE

This manual and the accompanying software in the SAS system present
nonparametric statistical methods for trend assessment in water quality, with an
emphasis on lakes. The purpose of the manual and software is to furnish lake
program managers with guidance on the application and interpretation of
methods for the detection of trends in lake water quality.

To provide a foundation, the manual begins with identification of basic concepts
and approaches in applied statistics that are important in trend detection. This is
followed by a discussion of hypotheses testing and common assumptions for
parametric tests and nonparametric tests for water quality trend detection in
lakes. The procedures and tests are presented in detailed examples for both
single-lake and regional analyses.

The guidance manual concludes with a list of pertinent references, software, and
appendices which provide a description of the trend detection software and
additional background on descriptive statistics.

This manual is intended to be a living document that will be updated and
improved as technology and circumstances change. As such, we request that
you send all suggestions to the Clean Lakes Program, U.S. Environmental
Protection Agency, 401 M Street, S.W., Washington, D.C. 20460.
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Chapter 1

Introduction

Water quality varies in time and space as a function of many macroscopic
and microscopic processes. On a large scale, changes in land use and pollutant
discharge over time can cause permanent changes or trends in water quality in
receiving waterbodies. On a yearly basis, seasonal changes in solar radiation,
temperature, and precipitation can cause cyclical patterns in water quality that
repeat each year. On a microscopic scale, many minor factors can influence water
quality. For example, a variety of factors (e.g., wind, temperature, and shoreline
irregularities) may collectively cause turbulent or molecular diffusion in water bodies
that results in an apparent random behavior in water quality in time and space.

Detection of a trend in water quality over time is dependent on: (1) the
acquisition of water quality data from a properly-desngned monitoring program, (2)
the application of appropriate statistical methods of trend detection, and (3) a good
understanding of relevant water quality relatlonshlps Both parametric and
nonparametric (distribution-free) statistical methods- have been proposed and
applied for water quality trend detection purposes. With either type of procedure, the
modeler seeks to separate a signal (the trend) from the noise (the "unexplained"
component) in the water quality data.

The assessment of possible trends in lake water quality can be an important
scientific task in support of lake water quality management. The presence or
absence of trends over time in key water quality variables is a good indication of the
degree to which water quality is responding to changes (land use and pollutant
discharge) in the watershed. This information, in turn, provides a basis for predictive
models of the pollutant loading - lake response relationship; these models can then
be used to forecast future lake response to future watershed changes.

Formal statistical trend analysis also provides a rational, scientific basis for
addressing concerns that may arise due to natural variations in water quality. For
example, citizens who participate in water quality recreation may be distressed
about undesirable "changes" in lake water quality that may be due entirely to natural
variations. An ongoing water quality trend detection program could provide
estimates of the likelihood that the observed "changes" reflect natural variability or
real trends over time. This helps in citizen education, and in turn, may suggest




alternative management actions that may be directed at either reversing trends in
water quality or reducing in-lake variability.

To help motivate the need for the application of the statistical methods
presented in this manual, a hypothetical water quality data set is created and
analyzed. To do this, first consider what factors cause measured water quality to
vary or change over time. A reasonably comprehensive list of these factors is:

-trends

-seasonal cycles

-daily cycles

-variations in hydrology (e.g., streamflow, lake level)
-natural (unexplained) variability

‘measurement error

In brief, "trends" refers to permanent changes in the level (e.g., mean value) of a
water quality variable, "seasonal cycles" and "daily cycles" refer to oscillating
patterns caused primarily by periodic changes in solar radiation, "variations in
hydrology" refers to (for example) the often observed inverse relationship between
volume of streamflow and concentration of a water quality variable, "natural
variability" includes all factors (e.g., microscopic processes) not explicitly identified,
and "measurement error" refers to the fact that there is always some error in the
field and laboratory methods of analysis.

Using these definitions, a ten-year data series for monthly measurements of
total phosphorus concentration in a lake is created. At the onset of sampling, the
mean concentration is 20ug/l. A 20% linearly increasing trend is imposed over the
ten year period, so that the mean concentration after ten years is 24ug/l. In addition,
a seasonal cycle (with annual frequency) of amplitude 10ug/l is included as a sine
wave. Finally, natural variability and measurement error are incorporated as a
"noise" term at three different levels characterized by standard deviation of 1, 3, and
5 ug/l, respectively.

The trend and seasonal cycle are shown in Figure 1.1. Notice that the trend
is visible on the graph even when combined with the sine wave. Thus, when the
graphical evidence is as clear as presented in Figure 1.1, there may be little need
for rigorous statistical analysis to confirm the existence of a trend (although the
statistical analysis may still be useful to provide the best estimate of the magnitude
of the trend).

Figure 1.2 presents a series of three graphs that combine the linear trend
with the noise term (natural variability and measurement error) at successively
higher levels of noise (characterized by the noise standard deviation). When the
noise standard deviation is only 1.0 (top graph), the trend is still visible. However, as
the standard deviation of the noise increases, the linear trend becomes visually
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Figure 1.2. Hypothetical example with trend and background variability, shown
from top graph to bottom with increasing levels of noise.




~ obscured by the natural variability and measurement error. In these cases, good
statistical methods are needed to separate the signal (trend) from the noise.

In Figure 1.3, the seasonal cycle is added to the noise and trend. When the
noise term is small (top graph), each separate component (particularly the sine
wave) is visible. However, as the noise increases (bottom two graphs), the separate
components become less evident visually. A combination of good limnological
judgment (to assess the seasonal cycle) and statistical methods is necessary to
- -successfully interpret a water quality time series like that in the bottom graph of
Figure 1.3. The methods presented below are appropriate for this task.

., The purpose of this manual is to furnish lake program managers with A
guidance on the application and interpretation of methods of trend detection in lake
‘water quality. To provide a foundation, the manual begins with identification of basic
concepts and approaches in applied statistics that are important in trend detection.
This is followed by a discussion of hypothesis testing and common assumptions for
~ parametric tests and nonparametric tests for water quality trend detection in lakes.

These procedures and tests are presented for both single-lake and regional
analyses. The guidance manual concludes with a list of pertinent references,
software, and an appendix which provides a description of the trend detection
software and additional background on descriptive statistics.
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Figure 1.3. Hypothetical example with trend, seasonality, and background
variability, shown from top graph to bottom with increasing levels of noise.




Chapter 2

Basic Statistics and Statistical Concepts

2.1. Descriptive Statistics

When a set of data is quite small, one may choose to use all of the data in an
analysis or to present the entire data set in a report. For large data sets, the
scientist recognizes that to most effectively transfer information he must summarize
the data set with a few well-chosen statistics. A choice is made to trade some of the
information contained in the entire data set for the convenience of a few descriptive
statistics. This choice is usually a good one, provided the descriptive statistics that -
are selected correctly represent the original data.

Some descriptive statistics are so commonly used that we forget that they
actually represent only one option among many candidate statistics. For example, -
the mean and the standard deviation (or variance) are statistics used to estimate the
center of a data set and the spread on those data. When these statistics are to be
used, the scientist should decide beforehand that they are the best choices to
describe the aforementioned characteristics of the data set. Often they are (notably
for symmetrically-distributed data following an approximate normal distribution), so
their use is frequently justified. However, it is noted below and in Appendix A that
there are many situations with lake water quality data where alternative descriptive
- statistics are preferred. These alternatives are robust/resistant statistics.

In the selection of descriptive statistics, it is important that the scientist have a
clear understanding of the purpose that the statistic serves. In many limnological
studies descriptive statistics are selected because the convenience of a few
summary numbers outweighs the loss on information that results when the entire
data set is described by the statistics. It is therefore essential that as much
information as possible be summarized in the descriptive statistics because the
alternative may be a misrepresentation of the original data.

Certain specific features of the data set are characterized using descriptive
statistics. For example the center, or central tendency of a set of data; is probably
the most important measure. Among the candidate statistics for central tendency
are the mean, median, mode, and geometric mean. Once the center of a data set is
described, the next important feature for the data distribution is the spread,
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dispersion, or scale. Among the candidate estimators of this feature of a data set
are the range, standard deviation, and interquartile range. These two characteristics
of a data set, central tendency and dispersion, are the most common descriptive
statistics. Other characteristics, such as skewness and kurtosis, are occasionally
important as well. At this point, if specific information and examples on descriptive
statistics is desired, the reader should turn to Appendix A.

2.2. Robustness, Resistance, and Influence

In the statistics literature, robustness refers to insensitivity to assumption
violations, resistance refers to insensitivity to outliers, and influence concerns the
effect of observations on summary measures (statistics) of the data. In parametric
statistical analysis, we make an assumption concerning an underlying population
model (often normal). We hope that estimators (e.g., sarnple mean and variance)
selected to summarize the data are robust if the probability model is incorrect, are
resistant to influential data points or outliers, yet are efficient (low standard error)
under any situation. If outliers and lack of resistance are concerns, we may choose
a distribution-free method or nonparametric test for analysis. In the future, robust
statistical methods may be the best choice for analysis of water quality data. At
present, we tend to recommend nonparametric methods and tests unless there is
little doubt that a parametric model is correct.

2.3. Hypothesis Testing
2.3.1. Introduction

In conventional statistical analysis, hypothesis testing for a trend is usually
based on a point null hypothesis. Typically, the point null hypothesis is that there is
no trend; it is often stated in this way as a "straw man" (Wonnacott and Wonnacott
1977) that the scientist expects to reject on the basis of the data evidence. To test
this hypothesis, data are obtained to provide a sample estimate of the effect {e.g.,
change in surface pH in Adirondack lakes), the data are used to provide a sample
estimate of a test statistic, and a table for the test statistic is consulted to estimate
how unusual the observed value of the test statistic is if the null hypothesis is true. If
the abserved value of the test statistic is unusual, the null hypothesis is rejected.

In a typical application of parametric hypothesis testing, an hypothesis, H,,
called the null hypothesis, is proposed and then evaluated using a standard
statistical procedure like the t-test. Competing with this null hypothesis for
acceptance is the alternative hypothesis, H,. Under this simple scheme, there are
four possible outcomes of the testing procedure associated with the truth (true or
false) and the test results (accept or reject) for each hypothesis; see Table 2.1.

8




Table 2.1 Possible Outcomes From Hypothesis Testing

State of Dgcisidn

H, is True Correct decision. Type | error.
' Probability = 1 - or; Probability = o
corresponds to the also called the
confidence level. significance level.
H, is False (H, is True) Type Il error. Correct decision.
Probability = B. .. Probability = 1 - §;
also called power.

The point null hypothesis is a precise hypothesis that may be symbolically
expressed as:

Ho:06=0¢
Hi:0#60

where 6 is a parameter of interest. An example of a point null hypothesis is, in
words, "there is no change in mean surface water total phosphorus concentration
after imposition of a phosphate detergent ban." Symbolically, this may be expressed
as: s

Ho: b4, = 0
Hipg-p = 0

where p, is the pre-ban true mean and p, is the post-ban true mean. The test of this
null hypothesis proceeds with the calculation of the sample means, x, and-x,. In
most cases, the sample means will differ as a consequéence of natural variability
and/or measurement error, so a decision must be made concerning how large this
difference must be before it is considered too large to be due to variability and/or
error alone. In classical statistics, this decision is often based on-standard practice
(e.g., accept a type | error of 0.05), or on informal consideration of the
corisequences on an incorrect conclusion.

2.3.2. Common Assumptions for Statistical Hypothesis Tests

Virtually all statistical procedures and tests require that one or more assumptions
hold. These assumptions concern either the underlying population being sampled or
the distribution for a test statistic. Since lack of compliance with an assumption can
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have a substantial effect on a statistical test, the common assumptions of normality,
equality of variances, and independence are discussed in this section. Among the
topics presented are the extent to which an assumption may be violated without
serious consequences, and approaches that might be recommended to address
possible assumption violations.

Normality

One of the common assumptions of many parametric statistical tests is that
samples are drawn from a normal distribution. Alternatively, a normal population
may not be required, but instead the statistic of interest (e.g., a mean) is assumed to
be described by a normal sampling distribution (i.e., the mean is normally
distributed). In either case, the key distinction between parametric and
nonparametric (or distribution-free) statistical tests is that a probability model (often
normal) is assumed.

Empirical evidence (e.g., Box et al. 1978) indicates that the significance level
but not the power is robust (i.e., not greatly affected) to mild violations of a normality
assumption for statistical tests concerned with the mean; this should also apply to
tests concerned with trend detection. This suggests that a test result indicating
“statistical significance" is reliable, but a "nonsignificant” result may be due to lack of
robustness to non-normality. Normality of a sample can be checked using normal
probability plots, chi square tests, or Kolmogorov-Smirnov tests; unfortunately, many
water quality studies often are not designed to produce enough samples to make
these tests definitive.

Normality of the sampling distribution for a test statistic is important because
it provides a probability model for interval estimation and hypothesis tests that
makes use of the test statistic. In many cases, distributional properties of the test
statistic could be assessed using Monte Carlo simulation. Alternatively, given the
limited robustness to non-normality and the uncertainty in the sampling distributions
of selected water quality statistics (e.g., what is the true underlying distribution for a
test statistic for model errors?), it may be wise to routinely transform to achieve
approximate normality (or symmetry) in a sample, if normality is required. Since
non-negative concentration data cannot truly be normal, and since there is empirical
evidence to suggest that environmental contaminant data often may be described
with a lognormal distribution, the logarithmic transformation is a good first choice.
Thus, in the absence of contrary evidence, it is generally recommended that water
quality data be log-transformed prior to analysis. This recommendation is often
compatible with the conventional approach to model deterministic patterns of
variability in the time series data (e.g., a streamflow effect); this is illustrated in
Chapter 3.

10




* Equality of Variance

A second common assumption is that, when two or more distributiofns are
involved in a test (i.e., to assess the difference in concentration at two sites), the
~ variances are to be constant across distributions. Many tests are also robust to mild
violations of this assumption. Since it is quite unlikely that there will be a need to
compare trends in lake water quality variables with widely different variances, this
assumption is not addressed further. The interested reader may consult Snedecor
and Cochran (1967) for discussion and examples.

Independence

The assumption that is likely to be of greatest concern is that of independence.
Most statistical tests (parametric and nonparametric) require a random sample, ora
sample composed of independent observations. Dependency between or among
observations in a data set means that each observation contains some of the same
information already conveyed in other observations. Thus, there is less new,
independent information in a dependent data set than in an independent data set of
the same sample size. Unfortunately, statistical procedures are often not robust to
violation of the independence assumption, so adjustments are generally o
recommended to address antncrpated problems

Dependence in a sample can result from trend, cyclical patterns, and
autocorrelation in the disturbances. One way to mathematically describe a water
quality time series is:

yi=PB1(time) +B2(sin{2n(time)}) +¢

In this expression, we have a linear time trend, a simple seasonal sinusoid, and a
disturbance term (g) that characterizes all remaining unexplained variation in the
water quality data. In most types of analyses, the assumption of independence
refers to independence in the disturbances; this is the case for time trend .
‘hypothesis testing. Thus, autocorrelation or dependence in the data series for the
water quality variable (y) may exist, but may be due to a deterministic feature of the
data (e.g., a time trend or seasonal pattern). This type of autocorrelation poses no
difficulty and is addressed by modeling the deterministic feature of the data and
subtracting the modeled component from the original series. Of particular concern in

testing for trend is autocorrelation that remains (i.e., is in the disturbances) after all
deterministic features are removed. When this situation arises, an adjustment to the
trend test is necessary; this i issue is drscussed below

In the common situation of positive autocorrelation in the disturbances (i.e., each
disturbance is positively correlated with nearby disturbances in the series, perhaps
due to persistence in behavior over time), confidence interval estimates will be too
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narrow and are thus more apt to lead to rejection of the null hypothesis. For
simplicity, the common assumption of a lag-one autoregressive structure is often
adopted (i.e., each disturbance is correlated with only the immediately preceding
disturbance in the series). This assumption is probably reasonable in many
situations and might be difficult to reject with the typical short water quality data
series of 25-50 observations.

Autocorrelation in the disturbances is the most commaon and potentially
troublesome of the causes of assumption violations. The degree of autocorrelation
is a function of the frequency of sampling; this means that a data set based on an
irregular sampling frequency cannot be characterized by a single, fixed value for
autocorrelation. For water quality time series, stream data obtained more frequently
than monthly may be expected to be autocorrelated (after trends and seasonal
cycles are removed). Stream water quality data based on less frequent sampling
are less likely to exhibit sample autocorrelation estimates of significance.

Autocorrelation in lake water quality data (in the absence of trend and
seasonal cycle) may be found at even longer frequencies than in streams and may
be expected in data collected on a sampling schedule that is shorter than the
hydraulic detention time. This occurs because a lake generally does not act as a
"flow-through" system; in-lake mixing may often result in a persistence in behavior
over many cycles of the water residence time.

2.4, Statistical Methods for Trend Detection
2.4.1. Summarizing Trend Data

Common statistical estimators are discussed above and in the Appendix; the
reader should refer to these sections for explanation of terms. In trend analyses, we
may have no observations, one observation, or perhaps a few observations per time
interval. If data are missing, there are fill-in methods that may be used for: (1)
simple interpolation, (2) estimation based on an assumed probability model (see
Gilliom and Helsel, 1986), or (3) estimation based on an assumed autoregressive,
moving average model. However, since: (1) interpolation adds no new information,
and (2) the two estimation methods require an assumption concerning the
underlying parametric model, no special adjustments for missing values are
recommended. In effect, relatively few missing values are irrelevant, while a high
percentage of missing values is apt to mean that there is too little information for
any conclusions in trend testing.

If there is more than one observation per time period, then a summary
statistic is needed. The likely options are: (1) select the data point closest to the
center of the time interval, or (2) select the median, trimmed mean, or mean of the
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observations. Selection of the single data point closest to the center of the time
period is the simplest option, but it has the disadvantage of losing the information
from the observations not used. If the number of observations per time period is
essentially the same within each time period, then it is recommended that a median
or trimmed mean be used'. However, if the number varies substantially among time
periods, then heteroscedasticity (non-constant variance) may be a problem since
the location statistics for the time periods will be based on different sample sizes.
Van Belle and Hughes (1984) note that the resultant heteroscedasticity does not
affect the distribution of the trend test statistic under the null hypothesis, but the
effect on test power is uncertain. Thus, a safe approach is:to use the median or
trimmed mean if the number of data points per time period does not differ greatly,
and to use-the data point closest to the center if sample sizes differ substantially.
Finally, if the number of data points per time period is n, which is always greater
than one, then summarize each time period with the median (or tnmmed mean) of
the n,data pomts closest to the center of the period.

2.4.2. Graphical Methods

Once the time series data have been prepared for analysis, they should be
examined graphically using some or all of the methods described in the appendix. A
bivariate plot of concentration versus time gives a visual perspective of trend. Since
water quality concentration data are often skewed-right, and large outliers are more
troublesome than are small outliers, it may be wise to log-transform the
concentration data before plotting. In addition, the smoothing spline in SASGRAPH
may help the eye see patterns in the data.

Bivariate scatter plots are also useful for examination of deterministic
patterns other than those associated with time (e.g., temporal trends and
seasonality). For example, there may be a deterministic relationship between water
inflow and concentration in river-run lakes, or perhaps dam operating policy in an
impoundment has a systematic effect on water quality. Identifi catlon of the effect of
these forcing functions may be enhanced with graphics. "

One particularly helpful graph is the box and whisker plot. For example, a
time trend may be examined with a set of annual box and whisker plots: one box for
each year, with concentration on the vertical axis and year on the horizontal axis.
This graph displays the time sequence of annual medians, quartiles, and extremes,
which is a more thorough expression of trend than is a simple graph of median
versus time alone. Box plots may also be used to visually capture seasonal
patterns: one box for each season, with concentration on the vertical axis and
season on the horizontal axis. As with annual box plots, the sequence of seasonal

1 The median may be preferred because it is in\)ariant under transformation (or nearly

invariant when there is an even number of observations); e.g., the ordering, and hence the
middle value, do not change under a log-transform.
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medians, quartiles, and extremes may be extremely helpful in diagnosing seasonal
patterns. '

2.4.3. Parametric Methods and Tests

Parametric approaches in trend detection involve a model for the trend and a
probability model for the errors. The model for the trend is typically a linear,
curvilinear, or step function, while the model for the errors is typically a normal
probability distribution with independent, identically-distributed errors. If the trend is
believed to be continuous (linear or curvilinear), ordinary least squares regression
may be applied to fit a continuous trend model, and the test of trend would be based
on the statistical significance of the regression parameters. If the trend is believed to
be abrupt (step function), a t-statistic may be used to evaluate a step trend
(Lettenmaier 1976; Montgomery and Loftis 1987). If seasonal patterns and
autocorrelation are present in a time series data set (in addition to a possible trend),
then autoregressive, integrated, moving average models (ARIMA, or Box-Jenkins,
models) may be the appropriate parametric modeling choice (Pankratz 1983).

The parametric approach is appropriate if the trend model is a reasonable
characterization of reality and if the model for the errors holds. The advantage to the
parametric approach is that, if the models hold, the statistical tests for trend should
be more powerful that distribution-free alternatives. Thus, the assumption that trend
and probability models are correct is the basis on which the superior performance of
parametric methods rest. If the assumptions concerning these models are incorrect,
then the results of the parametric tests may be invalid and distribution-free '
procedures may be more appropriate.

Given the features of water quality data identified in the previous section,
parametric trend modeling often begins with seasonal adjustment or a model
(perhaps sinusoidal) for the seasonal pattern. In addition, other deterministic
features of the data, such as a predictable relationship between concentration and
streamflow, should be modeled. These (and any other) deterministic causes of
water quality variability need to be explicitly modeled. In doing so, the non-trend
variability in the data can then be removed, or subtracted, from the raw data, which
reduces the background variability. This means that the "noise" component is
smaller, so that a "signal" (irend) can be more easily detected.

2.4.4. Distribution-Free Methods and Tests

If there is uncertainty concerning the applicabi‘lity of the trehd model or the
model for the errors, or if it is known that one or both of these models does not hold,
then distribution-free (or nonparametric) methods should be considered. -
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Distribution-free methods, as the name suggests, do not require an assumption

concerning the underlying probability model for the data generation process.

However, an assumption of independence is usually made; thus, autocorrelation

can be a serious problem, just as it is a problem for parametnc methods and robust
methods.

Kendall's Tau or the seasonal Kendall's Tau test (Hirsch et al. 1982, Hirsch
and Slack 1984, Gilbert 1987) are often good choices for distribution-free tests. The
Kendall's Tau test is used to determine if a time series is moving upward,
downward, or remaining relatively level over time. This is accomplished by
computing a statistic, based on all possible data pairs, that represents the net
direction of movement of the series. To.do this, the data are first ordered according
to time: x,, X, X,,....X,--.,X,,, Where t goes from 1 to n. All possible pairs of differences
X, - X; are calculated, where i>j (observation j precedes observation i in time). This
dlfference will either be positive (x>X), negative (x<x), or zero (x=x) for each of the
pairs. The number of positive differences minus the number of negative differences
is calculated; this becomes the test statistic (the-Mann-Kendall statistic).

If a water quality data series is increasing (decreasing) over time, then x>x,
(x<x) for most pairs and the test statistic will be a large positive (negative) number.
If the trend in the water quality data series over time is negligible, then the number
of positive pairs and the number of negative pairs will be essentially equal, and the-
test statistic will be small in absolute value. For small sample sizes (n<40) the
Mann-Kendall statistic is tabulated in most nonparametric statistics texts; for large
sample sizes (typical of most applications for water quality trends) a normal
approximation may be used as shown in the examples in Chapter 3.

The seasonal Kendall's Tau test yields the same analysis on a seasonal
basis; with monthly data, we may define a "season" as one month in length. If there
is distinct seasonal behavior, then the seasonal Kendall's Tau test is a good choice.
Berryman et al. (1988) or Gilbert (1987) prowde useful gundance on the selectlon '
and- appllcatlon of tests. . . : S

The Kendall's Tau statistic provides a nonparametric assessment of the
presence or absence of a trend. For a nonparametric estimate of the magnitude of
trend, the Sen or seasonal Kendall slope estimator (Gilbert 1987) are good choices.
These estimators are based on the median slope from the set of slope estimates for
the lines connecting all possible pairs of data.

Finally, it must be noted that the nonparametric tests and statistics are
appropriate if the parametric assumptions cannot be justified; otherwise, the
parametric procedures are more powerful. Since the parametric assumptions are
often questionable with water quality data, and since the nonparametric approaches
are almost as effective as the parametric methods when the assumptions are -
correct, it is our belief that nonparametric procedures should be routinely used for
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trend detection (and parametric procedures used only when justified). This
recommendation is based on: (1) concern for the effects of non-normality, (2)
concern for the effects of occasional outliers in water quality data, (3) the realization
that nonparametric methods are becoming "standard practice” in water quality trend
detection studies.
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| vCh‘apter 3

Trend Detection in Lakes - Examples and Discussion

3.1. Introduction

The discussion of basic statistical and graphical methods in Chapter 2 serves
an important purpose in a comprehensive approach to trend analysis. To be
specific, it is strongly recommended that certain graphs of the data be examined,
and that specific statistics be calculated, before the trend detection test is run. In
most cases, this preliminary analysis provides useful information and possible
adjustments to the data that result in improvements i in the trend detection test.
Some examples are:

1) A bivariate times series graph may indicate présence or absence of seasonql
variation. Th:s helps determme the need for seasonal adjustment and for the
seasonal version of the Kendall Tau test

2) A bivariate graph of monthly (or weekly) stream inflow versus monthly (or
weekly) water quality concentration may indicate a flow-effect, particularly in
lakes with short hydraulic detention times. This helps determine the need fora
flow-concentration model to reduce background variability.

3) A bivariate time series graph, and/or a histogram for the water quality
variable, will indicate the presence or absence of extreme observations
(outliers). This helps determine the need for a transformation and/or for a
nonparametric test of trend.

4) Seasonal (yearly) boxplots for the water quality variable will show the range,
median, upper and lower quartiles, and confidence interval for the median, for
each of the seasons (years) plotted. This can provide a visual indication of the
presence or absence of trend or seasonality.

These and other issues are illustrated in examples below.

In a parametric test of trend, deterministic features of the water quality time
series are often accounted for with separate terms for season, streamflow, and
trend in a regression model. In a nonparametric test, some deterministic features of
the data (e.g., a flow effect) are modeled with a simple parametric regression model,
and some deterministic features (e.g., seasonality) are adjusted for in a
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nonparametric manner. In either case, the analyst would usually like to assume that
the "unexplained" remainder of the water quality data exhibit random (white noise)
behavior. However, autocorrelation, or persistence, in the water quality time series
may still be present. As stated in Section 2.3.2, autocorrelation indicates that each
observation in a time series is not independent of other observations. In the most
common case of lag-one autocorrelation, each observation is correlated with the
previous observation. This means that some of the information that is conveyed in
the current observation has already been conveyed in the previous observation.
Thus, with autocorrelation, we do not have as much information that we believe we
have on the basis of sample size.

It is important to consider the nature of the model and the possible causes of
autocorrelation when examining a data series for autocorrelation. For example, a
data series with a strong linear trend or seasonal cycle is likely to yield large
value(s) for autocorrelation at one or more lags. These are apt to reflect the
deterministic trend, or cycle, and in fact, calculation of autocorrelation is a useful
diagnostic device for selecting a time series model. However, for the purpose of
trend detection in water quality analyses, autocorrelation is of interest in the data
series after all deterministic patterns are removed. When autocorrelation still
remains at this point in the analysis, then the procedure employed for trend analysis
must explicitly account for the autocorrelation.

3.2. Examples - Background

The first example involves trends in total phosphorus and total nitrogen in Falls
Lake, North Carolina. Falls Lake is a 10,700 acre lake located in the north central
piedmont region of North Carolina. The lake provides flood control, recreation,
downstream water quality control, fish and wildlife conservation, and water supply
for the Raleigh area. The North Carolina Division of Environmental Management
(DEM) collected data from Falls Lake on total phosphorus and total nitrogen on an
approximately monthly basis over a five year period from 4/26/83 until 10/14/87.

The flow chart illustrated in Figure 3.1 shows the outline of the procedures
followed in this case study, and should serve as a basic model for other trend
detection studies. The macros described in this diagram are all found
in Appendix D. The chart begins with entry of data into a Statistical Analysis System
(SAS) data set. Various statistical procedures and macro programs are then run,
depending on the outcome of each step. The final step in the flow chart provides
information on trend for variables with (or without) seascnality, while ignoring
autocorrelation.

The procedures outlined in Figure 3.1 were first run on the total phosphorus data -
set. Sections 3.2 through 3.7 guide the reader through these procedures, using the
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total phosphorus data set. Followung that, section 3.8 presents the results for total
nitrogen. : . .

{BASICS MACRO ¢

BOX PLOT|,—
MACRO [CORRELOGRAM MACRO] -
[KENDALL MACRO]
[ADIUST MACRO '.

' Flgure 3 1 F low chart for macro programs |

To begln raw data were t" rst entered into a SAS data set contalmng vanables for
time (SAS date variable (date)), total phosphorus (TP), and total nitrogen (TN). ‘The
date variable was then converted to calendar form and variables for the day, month,
and year were created for later use. Table 3.1 shows the completed data set o

As suggested earlier, the data sets were analyzed for basnc statistical
information, and histograms and bivariate time series graphs were constructed
using the macro "Basics" found in Appendix D. The macro was designed to
calculate measures of central tendency and dispersion, such as those discussed in
Chapter 2 and in Appendix A. For those unfamiliar with SAS, Appendix B contains a
brief introduction on how to run a macro on a new data set. W|th graphics . '
capability (SASGRAPH), the Basics program will also provide a histogram and
bivariate time series plot of the data set; otherwise a simple pnnter plot will be
drawn : ,

Information from the macro Basics was used to evaluate some of the underlying
assumptions needed to perform further statistical analyses and tests of
significance on the data. Specifically, the probability distribution approximated by
the data (normal, lognormal,...), the presence or absence of seasonal cycles within
the data, and the dependence of each observation on previous observations” |
(autocorrelation). The importance of normality and independence is discussed in
Section 2.3.2., and seasonality is discussed in Sections 2.4.3. and 2.4.4. Other -
patterns in the data, such as a deterministic flow/concentration relationship, should
also be considered (depending on lake detention time and reaction rates). In this
case study, corresponding information on inflow to the lake was not available. For
the total phosphorus data set used in this case study, the evaluations of normality,
seasonality, and independence, are discussed in Sections 3.5 through 3.7
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Falls Lake Raw Data Set ‘ 1
1:25 Saturday, September 22, 1990

OBS OBS DATE TP TN NEWDATE MONTH DAY YEAR
1 1 8426 . . 01/26/83 01 26 83
2 2 8456 . . 02/25/83 02 25 83
3 3 8486 . . 03/27/83 03 27 83
4 4 8516 0.07 0.58 04/26/83 04 26 83
5 5 8539 0.04 0.36 05/19/83 05 19 83
6 6 8579 0.05 0.36 06/28/83 06 28 83
7 7 8609 0.04 0.31 07/28/83 07 28 83
8 8 8643 0.04 0.51 08/31/83 08 31 83
9 19 8670 0.03 0.42 09/27/83 09 27 83
10 10 8699 0.03 0.71 10/26/83 10 26 83
11 11 8733 0.03 0.87 11/29/83 11 29 83
12 12 8748 . . 12/14/83 12 14 83
13 13 8774 0.07 0.85 01/09/84 01 09 84
14 14 8805 0.09 0.76 02/09/84 02 09 84
15 15 8839 0.10 0.72 03/14/84 03 14 84
16 16 8873 0.07 0.65 04/17/84 04 17 84
17 17 8901 0.04 0.45 05/15/84 05 15 84
18 18 8931 0.03 0.41 06/14/84 06 14 84
19 19 8966 0.02 0.41 07/19/84 07 19 84
20 20 8994 0.05 0.41 08/16/84 08 16 84
21 21 9026 0.04 0.51 09/17/84 09 17 84
22 22 9062 0.04 0.62 10/23/84 10 23 84
23 23 9085 0.04 0.73 11/15/84 11 15 84
24 24 9118 0.03 0.63 12/18/84 12 18 84
25 25 9161 0.03 0.85 01/30/85 01 30 85
26 26 9183 0.09 0.93 02/21/85 02 21 85
27 27 9210 0.05 0.71 03/20/85 03 20 85
28 28 9238 0.03 0.50 04/17/85 04 17 85
29 29 9252 0.03 0.33 05/01/85 05 01 85
30 30 9294 0.02 0.41 06/12/85 06 12 85
31 31 9322 0.04 0.41 07/10/85 07 10 85
32 32 9356 0.03 0.51 08/13/85 08 13 85
33 33 9398 0.02 0.41 09/24/85 09 24 85
34 34 9427 0.02 0.73 10/23/85 10 23 85
35 35 9449 0.03 0.94 11/14/85 11 14 85
36 36 9482 0.05 0.74 12/17/85 12 17 85
37 37 9512 0.04 0.76 01/16/86 01 16 86
38 38 9547 0.06 0.87 02/20/86 02 20 86
39 39 9567 0.06 0.80 03/12/86 03 12 86
40 40 9614 0.04 0.40 04/28/86 04 28 86
41 41 9643 0.04 0.31 05/27/86 05 27 86
42 42 9671 0.03 0.41 06/24/86 06 24 86
43 43 9693 0.02 0.41 07/16/86 07 16 86
44 44 9714 0.03 0.41 08/06/86 08 06 86
45 45 9769 0.01 0.41 09/30/86 09 30 86
46 46 9797 0.02 0.61 10/28/86 10 28 86
47 47 9818 0.03 0.94 11/18/86 11 18 86
48 48 9845 0.02 0.88 12/15/86 12 15 86
49 49 9876 . . 01/15/87 01 15 87
50 50 9895 0.08 0.85 02/03/87 02 03 87
51 51 9945 0.08 0.55 03/25/87 03 25 87
52 52 9958 0.04 0.44 04/07/87 04 07 87
53 53 9994 0.04 0.41 05/13/87 05 13 87
54 54 10016 0.03 0.41 06/04/87 06 04 87

Table 3.1: Completed Data Set
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3.3. Summary Statistics

The moments printed under the univariate procedure (Table 3.2) are explained
in SAS User's Guide: Basics (1989). They contain many of the measures of central
tendency and dispersion discussed in Appendix A. In addition to the moments,
quantiles and extreme values are also calculated. The univariate procedure also
draws a stem and leaf diagram, a box and whiskers plot, and a normal probability
graph. Figure 3.2 contains these graphs for total phosphorus. All three diagrams
provide a visual indication of the distribution of the data set, and their constructuon is
documented in the SAS User's Guide (1989)

The skew and kurtosis calculations are documented in most statistics texts, as
well as in the SAS procedures guide. The test for normality (W statistic) is based
upon the null hypothesis that the data values are a random sample from a normal
distribution. The test calculates the Shapiro-Wilk statistic, W, which must be greater
than zero and less than or equal to one, with small values of W leading to rejection
of the null hypothesis. The value for W of .859662 is small enough (indicated by the
PROB < W of 0.0001) to require us to reject the null hypothesis of a normal
distribution for the total phosphorus data set. See Gilbert (1987), for further
discussion of the W statistic.

The stem and leaf diagram in Figure 3.2 gives an indication that the data set is
slightly skewed, because of the concentration of data in the lower portion and the
spread of the upper portion of the diagram. The box and whiskers plot shows less
evidence of skew, with the mean and median falling on the same line, and the upper
whisker just slightly longer than the lower one. However, the two circles above the
box do indicate that there are values greater than 1.5 times the interquartile range
from the median, which would indicate a skewed data set (see Appendlx Afora
discussion of interquartile range).

The normal probability plot found in Figure 3.2 is a graph of the probability
density function. In this figure, the empirical data (the observations) are plotted
against a standard normal density function with the same (sample) mean and
standard deviation. The asterisks (*) symbolize the observations; if the data follow a
normal distribution, then the asterisks will fall in a straight line along the same path
as the normal function (+ symbols). As Figure 3.2 shows, the data do not follow a
normal distribution.

3.4. Graphical Analyses

In addition to the diagrams already mentioned, a histogram and a bivariate time
series graph of the data (including an estimated trend line) are constructed within
the macro BASICS. In the absence of graphics capability, a simple printer plot of
the data over time will be drawn as the bivariate graph. With graphics capability,
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UNIVARIATE PROCEDURE
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FALLS TEST DATA 4
BASIC STATISTICS
16:58 Thursday, September 13, 1990
UNIVARIATE PROCEDURE
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additional macros can be run to provide the user with boxplots of the chosen
variable. These macros are presented in Appendix D (and in the accompanying
disk) under the "Boxplt.sas" program listing. The macros are: (1) NOBS, (2) :
ORDER, (3) BOXVARS, and (4) BOXPLOT. Information and examples using these
macros can be found below and in Appendix D.

3.4.1. Histogram

The histogram in Figure 3.3 was constructed according to the procedure
outlined in Appendix A. The range and other information needed to construct the
histogram were obtained from an initial run of the univariate procedure. These
results were then entered into the macro BASICS, to allow for bars of uniform width
within the given range. The initial run did not specify midpoints of bar widths, whlch
can be added as options (see SAS User's Guide, 1989).

When constructed correctly (for a sample containing bars of equal width, as }
outlined in Appendix A), the histogram can also be used to determine the normallty
of a data set. The histogram found in Figure 3.3 provides an informative picture of
the distribution of total phosphorus data.

3.4.2. Time Series Graph

Bivariate time series graphs are discussed in the Appendix. For the case study,
Figure 3.4 is a bivariate plot of total phosphorus concentration over time. The
cyclic pattern it displays is an indication of seasonality in the data. The peak values
occur in spring, and the lowest in the fall of each year. The graph also includes a
predicted trend line based on a simple (ordinary least squares) regression of - -
concentration over time. It can be used to give an indication of the presence of -
trend, but should not be relied upon because it does not take into account the
presence of seasonality or autocorrelation.

3.4.3. Box Plot

The construction and use of box plots is discussed in Appendix A. Figure 3.5
presents seasonal box plots for total phosphorus from Falls Lake, with the X-axis as
the seasonal variable (MONTH), and the Y-axis the water quality variable being
studied. In this figure, a notched box plot is drawn separately for each month. See
the box and whiskers plot discussion in Appendix A for a more complete description
of the construction of a box plot.

When compared vertically, the notches for all of the boxes illustrated in Figure
3.5 do not overlap. This means that the medians for some seasons (months) are
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FALLS TEST DATA 5
FREQUENCY HISTOGRAM FOR TP
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Figure 3.4. FALLS TEST DATA
Plot of Observed and Linear Regression Model Predictions Against Time
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significantly different at an approximate alpha level of 0.05, which is an indication of
seasonality. Also note that the height of some boxes is larger than that for others.
This indicates that those months have a greater variability in total phosphorus
values.

Figure 3.6 illustrates the yearly box plots for the same data set. The notches of
these boxes do overlap vertically. This means that the yearly median values for
total phosphorus do not show statistically significant differences at an alpha level of
0.05. Moreover, the yearly box plots do not show a trend in the median value for
total phosphorus over the years. Of course, trend in the median value is only one
trend of interest; the box plots also display trend in extremes (minimum and
maximum) and trends in variability.

3.5. Normality

The importance of normality is discussed in Section 2.3.2. As noted in that
section, a normal distribution is required for many hypothesis testing procedure;s
and for parametric tests of trend. Normality is also required for most tests of
autocorrelation; thus a log transformation of the data may be appropriate when
testing for the presence of autocorrelation. .

The visual image supplied by the histogram, combined with the information from
the univariate procedure, led to the conclusion that the total phosphorus data do not
follow a normal distribution. Thus, the decision to apply a nonparametric ‘
(distribution free) trend detection method in this case study was based on the lack of
normality, combined with the presence of missing values. It should be noted that in
some cases, water quality concentration will be reported at or below a specified
detection level, reported as a missing value, or will yield a skewed histogram.
These data sets should either be transformed, or analyzed usmg a distribution free
method (such as the one used in this case study).

3.6. Seasonality

Figure 3.4 is a bivariate time series graph for total phosphorus. The graph
indicates the possible presence of seasonality in the data set by the cyclic pattern of
phosphorus concentration over time. Since the graph indicated the possibility of
seasonality, the data set was run through the macro "CORR" to construct a
correlogram and print the autocorrelation values.

- Autocorrelation (or correlation over time) can be thought of as an indicator of
persistence in behavior, or how similar one data point (e.g., observation or residual;
see Section 2.3.2) is to other data points taken at nearby time periods.
Autocorrelation is expressed in terms of time lags; for example, lag1 autocorrelation
refers to correlation between data points one sampling period apart. Similarly, lag12
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autocorrelation refers to correlation between data points twelve sampling periods
apart. For water quality data, positive lag1 autocorrelation is most common, and
indicates a persistence in behavior between data points adjacent in time. Likewise,
a positive lag12 autocorrelation for monthly water quality data is indicative of cyclical
behavior that repeats every twelve months (seasonality). - A negative autocorrelation
at six months lag is also indicative of a twelve-month (seasonal) cycle, as it
suggests an opposite response (e.g., high chlorophyll in summer and low
chlorophyll in winter) six months apart.

A correlogram is a graphical illustration of the autocorrelation values versus the
lag. The correlogram for total phosphorus, presented in Figure 3.7, clearly displays
a twelve month cyclical pattern. The value of .56642 for the lag12 autocorrelation is
close to the upper limit of significance (0.05 level) of .57692 (which means that it is
almost two standard deviations away from a zero autocorrelation value). This
correlogram was constructed according to the equations found in Pankratz (1983),
using the raw data set. Recall from the discussion in Chapter 2 that, for tests of
trend, autocorrelation becomes a concern only after all deterministic patterns
(including seasonality) are removed. Thus autocorrelation at this point in the
example should cause no alarm, and in fact aids in the diagnosis of seasonallty
This issue is treated further in Section 3.7.

The negéfive correlations with values six months apart, and strong positive
correlations with values twelve months apart, shown in Table 3.3 and Figure 3.7,
imply seasonality in the data set. These indications combined with the time series
graph (Figure 3.4) demonstrate a clear picture of the presence of seasonality in total
phosphorus. Thus, any trend detection method used must account for or remove
the effects of seasonality in order to get an accurate measure of trend in the data.

3.7. Independence

As noted in the discussion in Section 2.3.2, violation of the independence
assumption for tests of trend refers not to the raw water quality data, but to the
residuals left after the removal of all identified deterministic patterns, including
seasonality and trend. Thus, to properly select and apply the test for trend, the
analyst must first model and remove the very trend that he\she is trying to estimate.
The objective of this task is to assess the independence assumption, so that the
appropriate trend test may be chosen.

Figure 3.8 presents the sequence of data analyses leading to the selection and
application of the test for trend. Starting from the top of the figure, the analyst is
guided through a set of questions and statistical analyses intended to remove all
known deterministic features from the original water quality data series. Once this is
completed, the data\residuals are tested for autocorrelation. If autocorrelation is
rejected, then the standard Kendall test is applied for trend; if autocorrelation is not
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Figure 8.7. FALLS LAKE DATA
CORRELOGRAM WITH UPPER AND LOWER 95% CONFIDENCE LIMITS
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LAGGED

OBS TP

1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15 14

16 15
Table 3.3

FALLS TEST DATA

CORRELATION

1.00000
0.60342
0.22298
-0.09027
~0.26161
~-0.26187
-0.24185
-0.28056
-0.17439
0.01384
0.22991
0.46544
0.56642
0.39239
0.11456
-0.03949

PRINT OF DATA USED IN CORRELOGRAM

I

19:** Thursday, September 20, 1990

STE

0.12910
0.22361
0.24927
0.25258
0.25311
0.25758
0.26198
0.26567
0.27057
0.27243
0.27245

0.27566"

0.28846
0.30644
0.31470
0.31540

33

UPPER
LIMIT

0.25820
0.44721
0.49855
0.50515
0.50623
0.51516
0.52396
0.53135
0.54113
0.54487
0.54489
0.55132
0.57692
0.61288
0.62940
0.63079

LOWER |,
LIMIT

-0.25820
-0.44721
-0.49855
-0.50515
~0.50623
-0.51516
-0.52396
-0.53135
-0.54113

-0.54487

-0.54489
~0.55132
-0.57692
~0.61288
-0.62940
~0.63079




Go the data exhibit deterministic patterns of variability (e.g., effect of flow on concantration)?)

Yes. Model deterministic patterne Subtract modeled
pattern from original data, leaving residuals.
Continue subsaquenb analyses with the residuals:

Is there seasonality? (examine datal/residuals
using graphs and /or statistics)

Yes. Model seasonality and deseasonalize
datalresiduals. . :

Detrand the data/residuals.

Test the datalresiduals for
autocorrelation.

/\

If autocorrelation is significant, then use the
autocorrelation-corrected version of either the
Kendall test or the seasonal Kendall test.

If no autocorrelation, then use for trend detection:
(1) the standard seasonal Kendall test if seasonality
was identified, or
(i) the standard Kendall test if no seasonality found.

- J

Figure 3.8. Data analyses used to identify the appropriate test for trend detection.
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rejected, then the autocorrelation-corrected Kendall test is used. See the discussion
of independence in Section 2.3.2 for the explanation of this strategy for analysis.

Large (relative to the 0.05 significance level) positive values for lag1 and lag2
autocorrelations (after the removal of seasonality and any trend from the data) are
the most common indicators of serial correlation. Since these lag values represent
observations one or two months away from the observation in question, they may
be related to lake detention time. In examining the correlogram for autocorrelation,
rules-of-thumb adopted here are to:

¢ look at the general shape of the correlogram for deterministic patterns (e.g., is seasonahty still
evident?) that might have been missed in earlier analyses,

¢ consider that autocorrelation will be positive and will occur only at lagl, lag2, or lagl2, if at
all,

¢ use the 0.05 significance level for autocorrelatlon as the cutoff for presence/absence of serial
correlation.

These rules are suggested to help avoid misinterpreting the correlogram. Many
autocorrelations are presented simultaneously in a correlogram, so some are apt to
appear significant (0.05 level) purely by chance. Faulty inferences can be minimized
by taking advantage of expectations concerning water quality data. For example,
autocorrelation is expected to be positive (indicating persistence associated with a
common unexplained phenomena) and to be highest at low lags (indicating month-
to-month persistence) and/or highest at annual lags (indicating year-to-year
persistence). Other "significant” autocorrelations will generally be assumed to be by
chance and thus ignored.

To remove seasonality and trend in order to check for the presence of
autocorrelation, the data set was first run through the macro "KENS", which makes
use of the "Kendall" Fortran program. This macro determines the seasonal Kendall
Tau test statistic, the significance of that statistic (with and without a correction for
the covariance caused by autocorrelation), and the seasonal Sen slope estimate for
. the trend. Table 3.4 contains these values for the total phosphorus data set. The

formulas used in the calculation of these statistics are documented in Hirsch and
Slack (1984). S : .

The seasonal Sen slope estimate was then used with the seasonal median to
deseasonalize and detrend the data, in the macro "ADJUST". It should be noted
that the median value (as opposed to the mean value) was used to provide
resistance to outliers. The macro program detrended the data by subtracting the
trend line estimated using the seasonal Sen value for slope (see Appendices B and
D, ADJUST macro, for the formula used). The output from the macro ADJUST was
then run through the macro CORR (the "corradj.sas" program) again, to construct a
correlogram from the deseasonalized, detrended data. This correlogram was then
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TEST DATA 1
KENDALL TAU
1:41 Saturday, September 22, 1990

P-VALUE
WITHOUT P-VALUE
TAU SERIAL WITH SERIAL SLOPE
OBS STATISTIC CORRELATION CORRELATION STATISTIC
1 -0.29787 0.013974 0.23909 -.0033333

Table 3.4
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used to test for autocorrelation (see Figure 3.9). Recall that this is the procedure
outlined in Figure 3.8.

The values for the adjusted (deseasonalized, detrended) lag1 and lag2
correlations for total phosphorus are 0.10560 and 0.16765, respectively (see Table
3.5). Both of these are well within the significance limit (0.05 level), indicating there
was no serial correlation within the data set based on the stated rules-of-thumb.
This means that tests of significance using the seasonal Kendall Tau test statistic
will be run without a correction for serial correlation.

The presence of serial correlation in data (or residuals) results in violation of the
assumption of independence required for most statistical trend detection tests.
Thus, if autocorrelation is found, the test must be adjusted or the autocorrelation
eliminated. One possibility for elimination is to aggregate data, or reduce the
frequency of sampling, from monthly to bimonthly or quarterly. In most cases this
will eliminate serial correlation. However, the corresponding reduction in sample
number means that data must be collected over a longer time period in order to
account for the loss in statistical power.

The test used in the macro KENS has a correction for the covariance caused by
serial correlation (calculated according to Hirsch and Slack 1984). The macro
KENS is designed to calculate this correction, and report how it influences the
significance of the seasonal Kendall Tau test statistic in terms of a p-value. Thus, if
the data (or residuals) being analyzed exhibit serial correlation, the p-value of
interest is that reported with serial correlation; if there is no serial correlation in the
data (or residuals) choose the p-value without the correction.

Table 3.4 presents the output from the KENS macro, and as was noted above,
the P-value of interest for total phosphorus is the one without correction for serial
correlation. The particular values reported for this case study are discussed in the
next section.

3.8. Trend Detection in Total Phosphorus

The method of trend detection used in the macro KENS found in Appendix B is a
variation of the Mann-Kendall test discussed earlier in Section 2.4.4. The
program performs a seasonal variation of the test, with an optional correction for
serial correlation. The test can be used when the following conditions hold:

(1) the data set contains over 40 observations. (If the data set does not contain
over 40 observations, a simple Mann-Kendall test should be run) (see Gilbert 1987,
for the calculations).

(2) the data set exhibits seasonality.
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FALLS TEST DATA
CORRELOGRAM WITH UPPER AND LOWER 95% CONFIDENCE LIMITS
19:51 Thursday, September 20, 199¢

Plot of VAR*X. Symbol used is '*'.

Plot of UP*X. Symbol used is 'U'.
Plot of LOW*X. Symbol used is 'L’.
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Figure 3.9
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. FALLS :TEST DATA 1
PRINT OF DATA USED IN CORRELOGRAM
19:51 Thursday, September 20, 1990

LAGGED
ADJUSTED

UPPER
LIMIT

LOWER
LIMIT

CORREILATION " STE

WoONONOdWN P

WoONONTOIdWNVE O

1.00000
0.10560
0.16765
-0.11928
=0.07445
0.09431
-0.01524
0.02570
-0.00180
-0.00711
0.16451
0.02589
-0.10352
-0.20313
~0.02947
~0.16716

0.12910
0.22361
0.22444
0.22651
0.22756
0.22796
0.22861
0.22863
0.22868
0.22868
0.22868
0.23065
0.23069
0.23147
0.23442
0.23448

0.25820
0.44721
0.44887
0.45303
0.45512
0.45593
0.45723
0.45726
0.45736
0.45736
0.45737
0.46129
0.46139
0.46294
0.46884
0.46896

-0.25820
~0.44721
-0.44887
-0.45303
-0.45512
-0.45593
=0.45723
-0.45726
~-0.45736
-0.45736
-0.45737
-0.46129
~-0.46139
-0.46294
-0.46884
~0.46896




The Seasonal Kendall test is nonparametric, so it allows for the presence of
missing values and does not require a normal distribution. The total phosphorus
data set contained over 40 observations, did not appear to be normally distributed,
exhibited seasonality, and the residuals did not indicate lag1 autocorrelation. Thus,
we decided to use the information from the macro KENS without correction for serial
correlation. ‘

As mentioned in Section 3.7, results from the Seasonal Kendall Test on total
phosphorus calculated using the macro KENS are shown in Table 3.4. The
formulas for deriving these statistics can be found in Gilbert (1987), Hirsch et
al. (1982), or Hirsch and Slack (1984). In this case study we chose a significance
(alpha) level of 0.05.

The negative value of -0.29787 for the Tau test statistic indicates there is a
negative trend in total phosphorus. As stated in Hirsch et al. (1982), the distribution
of this statistic should be normal if the null hypothesis is true. The P-value of
.013974 indicates that the trend is significant at an alpha (significance) level of 0.05.
This value represents the probability of Z values for the test statistic at least as
extreme as the one actually calculated from the observed values, if the null
hypothesis of no trend was true. |

The Z statistic provides a measure indicating the position of the Tau test statistic
on a normal probability distribution table. It is based on the null hypothesis of
no trend in the data, which would give the statistic a normal probability distribution.
Hence, large (absolute) values of Z, and consequently small values of P, lead one to
reject the null hypothesis of no trend. It should be noted here that the output from
the macro reports only the P-value associated with the calculated Z statistic.

The KENS macro program also calculates the seasonal Kendall-Sen slope
estimator for the data set. This value is the seasonal equivalent to Sen's
nonparametric estimate of slope. It is the median of all possible slopes generated
between all possible pairs of data points. The value for slope in this case is
-0.0033333 units/year.

Thus, the conclusion for total phosphorus in Falls Lake is one of a slight (slope=
0.0033333 mg/l-year) decreasing trend. This trend is significant at the 0.05 level,
and is distinct from the seasonal cycle in the data.

3.9. Total Nitrogen
The data set for total nitrogen from Falls Lake was analyzed m the same

manner as was the total phosphorus data set (described in Sections 3.1 through
3.8). However, the results for total nitrogen were slightly different.
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3.9.1. Normality

Table 3.6 contains the SAS PROC univariate tables from the macro Basics, and
Figure 3.10 presents the corresponding plots. The stem and leaf diagram, box and
whiskers plot, and normal probability graph all indicate that the data do not follow a
normal distribution. This is reinforced by a W statistic for normality of 0. 90432, with
an accompanying probability of 0.0002 (see Table 3.6). This indicates a .02 percent
probability of finding a W statistic as small or smaller than the one observed if the
null hypothesis (a normal distribution) is true. Finally, the histogram constructed in
Figure 3.11 confirms the lack of normality in the total nitrogen data.

3.9.2. Seasonality

The monthly box plots illustrated in Figure 3.12 show a strong pattern of
seasonality. The notches do not overlap for several of the boxes, and the boxes
themselves show a cyclical pattern. The lack of overlap between the notches
indicates a statistically significant difference (approximate 0.05 level) between some
pairs of median monthly values for total nitrogen.

The correlogram constructed in Figure 3.13 shows sugnlf icant (0.05 level)
correlation at several of the lag values. A cyclic pattern is evident, with the most
significant negative correlation occurring at lagé and significant positive correlation
at lag12. The bivariate time series graph in Figure 3.14 also shows strong seasonal
cycles in the data.

3.9.3. Independence

After deseasonalizing and detrending the data as explained in Section 3.6, a
correlogram was constructed using the values from the adjusted data set (Figure
3.15). For this new data set, there were no significant (0.05 level) values for ‘
autocorrelation. This means that the tests of significance on the trend test statistic
are valid without a correction for serial correlation.

3.9.4. Trends in Total Nitrogen
Table 3.7 contains the output from the Seasonal Kendall test for trend in total
nitrogen. A synopsis of the statistical information calculated for the total nitrogen

data set showed that the data set:

(1) contained missing values
(2) did not follow a normal distribution
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FALLS TEST DATA 3
BASIC STATISTICS
12:19 Friday,

September 14, 1990

UNIVARIATE PROCEDURE

Variable=TN

Table 3.6

Moments

N 53 Sum Wgts 53
Mean 0.576604 Sum 30.56
sStd Dev 0.200758 Variance 0.040304
Skewness 0.340677 Kurtosis -1.1916
uss 19.7168 CsS 2.095789
CvV 34.81726 Std Mean 0.027576
T:Mean=0 20.90949 Prob>|T 0.0001
Sgn Rank 715.5 Prob>|S 0.0001
Num ~= 0 53

W:Normal 0.90432 Prob<W 0.0002

Quantiles (Def=5)

100% Max 0.94 99% 0.94
75% Q3 0.74 95% 0.93
50% Med 0.51 920% 0.87
25% Q1 0.41 10% 0.36

0% Min 0.21 5% 0.31
1% 0.21

Range 0.73

Q3-Q1 0.33

Mode 0.41

Extremes
Lowest Obs Highest Obs
0.21( 55) 0.87( 38)
0.31( 41) 0.88( 48)
0.31( 7) 0.93( 26)
0.33( 29) 0.94( 35)
0.36( 6) 0.94( 47)

Missing Value
Count

% Count/Nobs

11.67
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BASIC STATISTICS
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FALLS TEST DATA 5
FREQUENCY HISTOGRAM FOR TN
18:45 Friday, September 14, 1990

FREQUENCY OF TN

FREQUENCY
19 + © hkkk
| T kekkk
18 + de o de ok
| Jok kK
17 + de o de ok
| kkkk
16 + d ok k
| kkkk
15 + % %k kK
| *kkk
14 + *kdk
| % d k&
13 + Jodkdek
| kkkk
12 + ddkk
l ddkkk
11 + d &%k ok
| Jok d %k
10 + & % %k &
| % de & %
9 + *ddk * %k k
| % & %K % & % %
8 + & % %k *kdkk
| & gk & de ke k
7 + d kK Jo o & ok Hk Kk k
| & ¥ &k Je ok Je K & % &
6 + kkkk hkkk Jood ek *kkk
| khkkk hhkkk ik *kkk
5 + kkkk hkkk Jood Kk F*dkk
[ hhkhkk hkkk &k % *kkk
4 + kdkkdk hdkkk hhkkk khkk hkkk hkk%k
] hhkkk dkkkk hkkk kdkk hkkk hkkk
3 + khkkk kkkk dkkkk khkkk hdhkk hkkk kkkk
| khkkk hhkkk khkkk hhkkk kdkk hhkkk  dkkk
2 + kdkkk kkkk dkkkk khkkk hdkk hkkk dkkk
| khkkk kkkk kkkk kkkk kdkk Kkkk Akkk
1 + dkdik  dekkdk hhkkk hkkk khkkk kdhkk hkkk hkkk
l

TN MIDPOINT

Figure 3.11
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SEASONAL BOXPLOTS USING FALLS DATA
TOTAL NITROGEN DATA SET

TOTAL NITROGEN (mg/L)
e
3

Figure 3.12




FALLS TEST DATA
CORRELOGRAM WITH UPPER AND LOWER 95% CONFIDENCE LIMITS
20:** Thursday, September 20, 199(

Plot of VAR*X. Symbol used is '*!',.
Plot of UP*X. Symbol used is 'U‘'.
Plot of LOW*X. Symbol used is 'L'.
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FALLS LAKE TOTAL NITROGEN DATA
Plot of Observed and Linexr Regressian Mode} Predictions Against Time

ALY

TRV

ava o b

02 :
T L) ] L) ] ] L ) ] T 1 ¥ 1) 1 1 ¥
WMWMMMMWOMWWWMWWWWM@WN&MWWWMW
Time

Legend: ————— OBSERVED VALUES PREDICTED VALUES




ZO0HBYEHEMXAWON

FALLS TEST DATA 2
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TEST DATA 13:** Friday, September 14, 1990

KENDALL TAU 1
P-VALUE
WITHOUT P-VALUE
TAU SERIAL . WITH SERIAL SLOPE
OBS STATISTIC CORRELATION CORRELATION STATISTIC
1 -0.042553 0.79246 0.69530 0

Table 3.7
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(3) contained seasonal cycles, and
(4) did not show serial correlation.

Therefore, the P-value without serial correlation for the Tau statistic of -0.042553 is
the chosen indicator of significance in the trend. The reported P-value for the Tau
statistic in this case was 0.69530, which is quite unlikely to be associated with a
trend. In effect, this P-value means that the probability of getting a Z value as
extreme or more extreme as that observed is .695, glvem that the null hypothesns of
no trend is true.

3.10. Conclusions from the Phosphorus and Nltrogen Examples

While the total phosphorus and total nltrogen data sets dld show snmllarltles in
distribution, seasonality, and independence, they differed in trend. Total
phosphorus displayed a slight (but statistically significant at the 0.05 level)
downward trend over the years studied. Total nitrogen dld not show any statistically
significant trend. co

3.11. Regional and Statewide Lake Analysis
3.11.1. Introduction

Tests of statistical significance (hypothesis tests) are usually run so that they
are to be interpreted individually. This means, for example, that "the trend in pH in
Lake A is significantly different from zero at the 0.05 level" is a permissible
statement. However, the statements should not be made collectively or
simultaneously without appropriate adjustments. That is, we cannot say that "Lakes
A, B, and C all have upward trends in pH that are simultaneously significant at the
0.05 level," unless the individual significance level is adjusted downward (e.g.,
0.05/3), or the test is explicitly designed for multiple comparisons.

An alternative to either individual or simultaneous statements of statistical
significance are "collective" statements. These statements may be expressed as
“"the trend in pH in the sampled population of lakes is significantly different from zero
at the 0.05 level." Collective statements of statistical inference may be made using
meta-analysis (Hedges and Olkin 1985), which is, literally, the statistical analysis of
statistics. In this case, we can perform a meta-analysis on the seasonal Kendall's
Tau statistics or the seasonal Kendall slope estimates for all of the lakes in the
sample to draw collective conclusions concerning the sample.
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3.11.2. Tests of Significance

Once the trend analysis presented above is run for each lake of interest,
meta-analysis can be applied to these resuits to make a collective statement
concerning regional trends. The lake statistics used in this example of meta-analysis
are hypothetical; they were created to illustrate the relatively simple calculations
necessary to make regional inferences concerning trends in lake water quality. The
statistics represent estimated p-values that could result from the same seasonal
Kendall trend detection test illustrated above.

This example uses the trend detection results from 10 hypothetical lakes to
make a collective statement about trend for all of the lakes. This particular example
of meta-analysis uses a method of adding Z scores (standard normal deviates) to
combine probabilities; several other statistical methods may also be used as shown
in Rosenthal (1984) and in Hedges and Olkin. Information on the hypothetical
lakes, along with the formula used for the meta-analysis, is presented in Table 3.8.

The results of the meta-analysis in Table 3.8 indicate that even though three
of the sample lakes do not show statistically significant (0.05 level) trends, there is
collectively a statistically significant trend for the lakes as a whole. The highly
significant Z (Z= 6.49) for the meta-analysis is due to the influence of all of the
trends being in the same direction (i.e., all have a positive Z score), most of which
are statistically significant (at alpha = 0.05).

Table 3.8 Lake Information And Meta-Analytic Formula .

L

ake Number of Observations p-value - Z-score
60 +0.013974 +2.45
120 + 0.002460 +3.02
100 +0.012367 @ +2.50
72 - +0.106785 . +1.61
84 + 0.965324 +0.04
60 + 0.014672 +2.43
72 + 0.003671 +2.90
120 + 0.005968 +2.75
60 + 0.026861 +2.21
84 + 0.546129 +0.60

«Joo\lmcnhwm-_-xl

-t
o

sum - +20.51
mean o +2.05
median +2.44




The meta-analytic method of adding Z's (standard normal deviateé) uses the
following simple formula to calculate the test statistic:

The resultant Z-statistic (6.49) is compared to a table of standard normal deviates to
assess its significance.
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Appendix A: Basic Descriptive Statistics

Measures of Central Tendency

Probably the single most useful statistic summarizing a data set is an
indication of the center of the sample. "Center" suggests the vague notion of the
middle of a cluster of data points of perhaps the region of greatest concentration of
data. Since samples of data exhibit a variety of distributions when plotted as
histograms, it is not possible to unambiguously define the center, and as a resuit
there are several statistical estimators that serve as candidates for determining
central tendency or location. Each candidate, as noted below, may be considered to
have its own advantages and disadvantages for the task at hand.

Mean (arithmetic)

The arithmetic mean, or simply, the mean, is the most frequently used of the
central tendency estimators. It is so commonly used that the scientist often loses
sight of the true reason for calculating descriptive statistics. The result is that the
mean is sometimes calculated as the central tendency statistic in situations where
another estimator would be better.

The arithmetic mean (x) is the sum of the observations (x) divided by the
number of observations (n):

x= 2% (A1)

Each observation contributes its magnitude to the sum of the observations and
hence to the mean. For symmetric distributions (like the normal or Gaussian
distribution), the mean calculated from a sample of data (the sample mean) often
comes quite close to the center, or peak, of the histogram for that sample. However,
limnological data are often not symmetrically distributed. The extremely high or
extremely low observations characteristic of skewed data distributions "pull” the
mean in the direction of the skew; this means that a few extremely high
observations can pull the mean away from the bulk of the observations and toward
the few high data points. In those situations, a resistant estimator, like the median or
the mode, might be preferred.

Median

When a set of data is ordered from lowest to highest value, the median is
identified as the middle value. The median is therefore known as an "order statistic”
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since it is based on an ordering or ranking of observations. When the total number
of observations is an even number, leading to two middle values, the median is then
the average of the two middle values.

The "order" of the median observation is:
Median Observation = (n + 1)/2 (A2)

Since the effect on the median of all but the middle-ranking observations is simply to
hold a place in the ranking, outlying observations do not pull the median toward the
extremes. The median is resistant to the influence of any single observation, and
thus it is a good statistic to use when the histogram is skewed or unusually shaped.

Trimmed Mean

The trimmed mean is the mean value from a subsample of the original
sample. The subsample is formed by symmetrically trimming a small percentage of
the data points from either end of the ordered observations. For example, a 10%
trimmed mean is calculated from the subsample remaining after the highest and
lowest 10% of the observations are removed from the data set. At the extreme, the
median is the trimmed mean with all but the middle observation removed.

The trimmed mean is a good (efficient) choice for central tendency when
censoring occurs or when a few outlying observations are found in the data. Here,
censoring refers to data points reported as "below detection limits." In that case, if
15% of the data points are below detection limits, then a 15% trimmed mean
estimator (involving 15% trimming from each end) should have lower bias than the
arithmetic mean estimator based on all uncensored obiservations.

Mode

The mode is the value in the sample that is most frequently observed. For
water quality concentration data on a continuous scale of milligrams per liter, it is
possible that no value is repeated more than once. In that case, the mode may not
be a useful estimator. Alternatively, if a histogram is used to represent a data set,
the mode is defined as that range of values associated with the tallest bar on the
histogram. The mode is considered a good estimator for central tendency because
the most frequently observed value is usually near the center of the distribution. An
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examination of a histogram for the sample will indicate whether the mode actually
does correspond with the center.

Geometric Mean

The geometric mean is the antilog of the mean of logarithmically-transformed
observations. Therefore, it is a reasonable measure of central tendency for a set of
data that exhibit a lognormal distribution. The lognormal data distribution is skewed
in the original units of measurement, but it is normal (Gaussian) when the original
measurements are log-transformed. The lognormal distribution has been suggested
by several investigators as a good probability model for concentration data for
environmental contaminants. Data sets described by the lognormal have a few high
values that are somewhat extreme from the bulk of the observations.

The ge,orrietric mean may be calculated in two ways:
Geometric Mean = antilog ( 23,?91)* ) (A3)
or:

Geometric Mean = [I1x;] 4 (A4)

where T[Ixj=Xx1eXxaeX3e...0X),.

Measures of Dispersion

Other than central tendency, measures of dispersion or spread are the most
commonly cited statistics used to summarize a data set. Dispersion in a data set
refers to the variability in the observations about the center of the distribution. Good
measures of dispersion will be obtained from symmetric distributions. Asymmetry, or
skewness, will affect the estimate of dispersion so that it overestimates spread in
the shorter tail of the data distribution (while underestimating the spread in the
longer tail). A transformation (e.g., log transform) should be considered in cases of
asymmetry in order to create a symmetric distribution in the transformed metric.
Statistics are then calculated on the basis of the transformed metric.
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Standard Deviation

The most commonly used statistic for dispersion is the standard deviation.
Like the mean, the standard deviation has been used so often that it sometimes is
thought to be equivalent in definition to dispersion. In fact, like the mean, the
standard deviation is strongly affected by extreme values. Thus, the standard
deviation for a distribution of data with a long tail to the right is inflated by the values
at the extreme right. It may be preferable to apply a transformation to create a
symmetric distribution before calculating the standard deviation.

For a sample, the sample variance (s?) is:

(xX-%)?
§?=— (A5)

and the sample standard deviation (s) is the square root of the variance (Js_2 ).

Absolute Deviation

The standard deviation is based on squared error; squaring the deviation
between a data point and the sample mean increases the influence of the largest
and smallest observations on the estimate of deviation. To reduce the influence of
outliers on the dispersion statistic, the absolute deviation should be considered. To
calculate an absolute deviation, the mean (or median) is first estimated, and then
the absolute value of the difference between the mean (median) and each data
point is calculated. The mean (or median) of these absolute deviations is then
calculated and is called the mean (median) absolute deviation.

Interquartile Range

Since the standard deviation is unduly influenced by extreme observations in
both symmetric and asymmetric distributions of data, a resistant alternative to the
standard deviation (like the median is to the mean) is needed for situations in which
the data are skewed but a transformation is undesirable. Fortunately a good
alternative exists - the interquartile range. Like the median, the interquartile range is
based on order statistics, and thus it is unaffected by the magnitude of the extreme
observations in either tail. It is calculated as the difference between the observation
at the 75%ile (upper quartile) and the observation at the 25%ile (lower quartile):

Lower quartile rank order = (1/2)(1 + median rank order)
A4




Upper quartile rank order = (1/2)(1 + n + lower quartile rank)

Interquartile range = | = lower quartile value - upper quartile value

Range

An easily determined and therefore frequently cited measure of dispersion is
the range. The range is simply the maximum value minus the minimum value. Since
it is clearly affected by the magnitude of the observations at either extreme, the
range should not be relied upon as the sole indicator of variability. Nonetheless, it is
often informative to list the range along with one of the other two dispersion
statistics mentioned above.

Graphical Analyses |

It is good practice in statistical analysis to begin a study with a graphical
display of the data. That is, before descriptive statistics are calculated from a data
set, and before the data are statistically analyzed for trend, it is wise to look at
selected graphical displays of the data. Many of the graphs recommended for this
task are useful in identifying important patterns in the data or in identifying the need
to transform the data prior to analysis. If inferences drawn from analysis of the data
are to correctly represent actual behavior, then it is important that any summary
statistics used to draw inferences are representative of the data set. The graphical
displays help guide the choice of any necessary mampulatlons of the data and
selectlon of statistics and statistical tests.

Graphs can also be useful during the course of a statistical study. For
example, bivariate plots are helpful in identifying seasonal patterns or examining the
relationship between inflow and concentration. Upon completion of the statistical
analysis, the scientist often wisely chooses to present some of the results in
graphical form. Not infrequently, conclusions are most effectively conveyed in a
graphical display.

Hi ram

In even the simplest of limnological studies, data on a single characteristic
need to be analyzed. Likewise, in a simple trend analysis of a single water quality
variable, it is often useful to examine the distribution of the data in order to assess
the central values, variability, and extremes. The limnologist could calculate the
mean, standard deviation, minimum, and maximum of the sample data set;
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alternatively, he could calculate other statistics representing central tendency and
dispersion. Prior to calculating any statistics for the sample, however, the scientist
should first look at a plot of the data. For data representing a single characteristic
(such as total phosphorus concentration), the histogram is often a useful graphical
display.

As an example, data on total phosphorus concentration from 1982-1988 in
Jordan Lake (North Carolina) are to be analyzed for trend, but first the scientist
would like to summarize the entire data set with a few statistics (perhaps to present
on a graph of the time series). To obtain one picture of the sample to aid in the
selection of statistics, the scientist plots the histogram shown in Figure A1. To
construct the histogram, the scientist must first divide the range (highest value to
lowest value) into equal-sized intervals. In Figure A1, the range is approximately
0.030mg/l to 0.200mg/l and is divided into intervals of 0.010mg/l. For each interval,
0.030 to 0.040, 0.040 to 0.050, and so on, simply count the number of data points
that lie in the interval and construct vertical bars with height proportional to that
number. So, for example, there are two observations in the 0.070 to 0.080 range
and three observations in the 0.080 to 0.090 range. Thus, the bar for the 0.080 to
0.090 interval is 1.5 times the height of the 0.070 to 0.080 bar.

What does the histogram tell us about the sample? Basicallly, it provides us
with a visual image of the distribution of data points in the sample. In specific terms,
this means that we are able to quickly see such things as location of the "center" of
the sample, amount of "dispersion," extent of "symmetry," and existence of "outliers"
in the sample. In Figure A1, the center appears to be between 0.030mg/l and
0.060mg/1, depending on choice of central tendency statistic (e.g., mode, median,
mean). Dispersion could perhaps be characterized by stating that over 75% of the
observations lie between 0.030mg/I and 0.060mg/l, although this does not indicate
the obvious skew in the data. The histogram clearly displays one outlying point
which should be checked as a valid data point.

The picture created by the histogram is of considerable value in the selection
of descriptive statistics. Some care should be observed in the construction of the
histogram, however. With changes in interval size (e.g., changing interval width from
0.010mg/l to 0.020mg/l), the histogram may assume different shapes which might
affect the inferences drawn.

As noted above, the histogram provides an impression of the extent of
symmetry in the sample. Symmetry in a data set is a desirable attribute for two
reasons. First, it often means that one can characterize the sample as having a
distribution with a shape similar to those symmetric distributions (e.g., the normal
and uniform distributions) which are commonly an assumption of statistical analysis.
Stating, for example, that a sample approximates the normal distribution conveys
useful information to a reader. Beyond that, symmetry implies that the common
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descriptive statistics such as the mean and standard deviation can be used to
provide an adequate summary of the sample.

The foregoing discussion suggests that it might be useful to apply a
transformation, if necessary, in order to create symmetry in an asymmetric data set.
Fortunately, limnological data are often approximately lognormally distributed, so
there is an obvious choice for transformation. The lognormal distribution is strictly
positive (all observations > 0), and it is skewed right. As an example, the Jordan
Lake total phosphorus data in Figure A1 approximately fit this description. To check
for lognormality, the logarithmic transformation is applied to the data, and a
histogram of the transformed data is plotted in Figure A2. Comparison of this
histogram with a normal distribution (i.e., a bell-shaped curve) provides a rough test
of lognormality; formal tests do exist (e.g., Kolmogorov-Smirnov test or chi-square
test) and may be found in many statistics texts.

The difference between Figure A1 and Figure A2 illustrates how a
transformation may change the shape of a histogram. While the log-transformation
in Figure A2 did not achieve symmetry of the original data plotted in Figure A1, it did
alter the histogram shape. To be specific, the logarithmic transformation tends to
"spread out" observations that are low in value and "squeeze in" observations that
are high in value. As a result of this effect, the outlier in Figure A2 is not as separate
from the bulk of the observations as it is in Figure A1.

Through the study of the histograms of the sample, we should be in a better
position to determine descriptive statistics for the data and to make inferences from
the data. ' '

Bivariate Plots

In time trend analysis, the basic relationship of concern is the bivariate
relation between concentration of a contaminant and time. Many statistics (e.g.,
correlation coefficients) and many statistical methods (e.g., regression analysis) are
also fundamentally concerned with relationships between pairs of variables. Without
question, the single best way to examine a relationship between pairs of variables is
through a bivariate graph.

For example, a bivariate graph of the time series for the Jordan Lake data
discussed above is shown in Figure A3. This graph provides some indication of
trend, variability, seasonality, and outliers. While this pictorial impression is clearly
helpful, it must be recognized that certain patterns (e.g., seasonality) can be
masked by the background variability; this is shown in some of the examples that
follow in this manual. Figure A3 displays one outlier (which suggests either a
transformation or nonparametric methods in subsequent statistical analyses), but no
clear graphical evidence of seasonality or trend. In later sections, we see if these
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conclusions are maintained when time series methods are employed to examine the
data.

Box and Whisker Plots

Multiple observations, predictions, or residuals of a single water quality
variable can be effectively analyzed graphically using a box and whisker plot. Box
and whisker plots are based on order statistics (statistics determined based on the
ordering of observations from lowest to highest value). For a data set, or for
comparison of two or more data sets, the box and whisker plots display information
on the sample median, dispersion, skew, relative size of the data set, and statistical
significance of the median.

The SAS macros presented in this manual, SAS PROC UNIVARIATE (which
produces small, un-notched plots), or the steps (from Reckhow and Chapra 1983)
below may be followed to construct a box and whisker plot for a single variable:

1. Order the data from lowest to highest.

2. Plot the lowest and highest values on the graph as short horizontal hnes These
represent the extreme values for each box and whisker plot.

3. Determine the upper and lower quartiles for the data set. (The quartiles are the
values at the 25" and 75™ percentiles.) These values define the positions of the
upper and lower edges of the box. Using vertical lines, connect the highest value
with the upper quartile and the lowest value with the lower quartile.

4. Plot the median as a dashed horizontal line within the box.

5. Select a scale so that the width of the box represents the sample size. For
example, each centimeter of width could represent 25 observations.

6. determine the height of the notch (in the box at the median) based on the

statistical significance of the median. Based on work by McGill et al. (1978), the
height of the notch above and below the median is approximately:

Notch Limits = Median+(1.571/ /n)

where:
| = interquartile range = upper quartile - lower quartile

n = sample size
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With this mathematical definition of the nofch limits, the notch in the box provides an
approximate 95% confidence interval for comparison of box medians. Therefore,
when the notches for any two boxes overlap in a vertical sense, the medians are not

significantly different at about the 5% level.
As an example, Figure A4 presents two box and whisker pléts for a water

Indicates Statistical Significance —— Maximum Value
at 0.05 Level (for Median : 75% Value

/

----------------- < Median Value

25% Value

Concentration
Interquartile Range

—— Minimum Value

Lake A Lake B
Figure A4. Box and whisker plots.

quality variable of interest measured in two lakes. The graph provides information
on:

1. An estimate of the median concentration in each lake
2. A measure of dispersion in the concentration (the interquartile range)

3. The range (highest concentration - lowest concentration), and an indication of
skew (based on lack of symmetry in the box shape above and below the median).
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For a study of the concentratlons from two or more samples (e.g., each year could
represent a sample in a tlme series), the scientist can display:

- 1. A statistical test of sugmf cance in the difference between the two medlans
based on vertical overlap between notches

2. A visual comparlson 'between the two samples, based simply on observing the
similarities and differences between features of two box and whisker plots.

Note that the notches in Flgure A4 do not overlap in a vertical sense, indicating
that the medians are sngmf cantly dlfferent at the 5% level.

Soline Smoothing
A spline smoother is a nenparametric regression estimator that may describe
a locally-persistent pattern in a data set. In a graphical presentation, the spline is a
smoothly-curving line that describes the general patterns in the data. It is similar to a
moving average, in that it provides a local fit at each point. However, all data points

in the local "window" are not weighted equally; data closest to the pomt of fitare
assigned the highest welghts '

At one extreme, a straight-line regression model is the outcome from spline
smoothing; at the other extreme, the spline will zig-zag through every data point. in
between the two extremes are literally an infinite number of compromises of these
two fits. The SAS spline function in PROC GPLOT may be used to produce a graph
of the spline smooth; with a smoothing parameter of about 0.5, the graph from
GPLOT may be quite informative in displaying trend and seasonal pattern.
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Appendix B: Introduction to SAS Macros

The computer functions in this manual make use of the SAS macro processing
language. Macros are separate programs within the SAS system that can be used
to simplify repetitive data entry tasks. The macro processing language allows the
user to change input variables in a program that performs a given function, without
having to rewrite the entire function. The programs can be stored separately from
other SAS functions, and can be invoked at any time within a given program. Thus,
the user can store programs that perform basic (or complicated) functions outside a
given program, then invoke them to be used when needed.

Macros are invoked by the use of a percent sign (%), and the variables within the
program are preceded by an ampersand (&). Each macro program has its own
name, and can be invoked simply by writing (%) followed by the name of the
macro. Each of the variables used in the macro (denoted by the "&" preceding
them) is then defined in parentheses; for example, see the third page of Appendix
D, where the macro "Basics" is being called. Notice that each of the variables
defined in the program (found on the second page of Appendix D) must be assigned
a value in order for the program to run. Comments at the beginning of each macro
explain the purpose of the macro and list the variables that must be defined for that
macro to run.

In order to run the macros used in this case study, the user must be familiar with
the data set being analyzed. The information needed to run the macros can be
found in the comment section at the beginning of each macro program. Comments
are separated from program language by a row of star (*) symbols. All of the macros
require a time variable, in the form of a SAS date variable. The SAS User's Guide:
Basics (1989) gives information on how to enter or convert dates into a SAS form.
Some of the macros require information on the number of observations and the
number of seasons per year.

The SAS macros found in Appendix D were designed to give the user a
framework for the detection of trends in water quality constituents. They can (and in
many cases should) be modified to suit the users needs. This appendix covers four
issues that users need to be familiar with, and is designed for the inexperienced
macro user. The four issues discussed are as follows:

(1) Preparation of the data set.

(2) Naming of macro variables.

(3) Saving files from a macro for later use.
(4) Graphics modification.




The macros themselves are found in Appendix D, and many of the references
will be to specific lines of text within the macro. There are comments throughout
each of the macros that are designed to let the user know what function is being
performed. These comments are always preceded by an asterisk (*), and are in
most cases self-explanatory.

Data Preparation

For the macro programs to run properly, the data sets must be in a form the SAS
system can read. Actual data set entry is described in detail in the SAS User's
Guide: Basics (1989), and should provide the user with the information needed to
transform variables (such as date) into SAS variables. Once SAS has the variables
in a data set, they can be modified as needed for each macro.

The only requirements to start the macro Basics are: a data set name, a date
variable (representing sequential time), the variables to be studied, a title to print on
output pages, and whether or not your machine has graphlcs capabilities
(SASGRAPH). Each of these requirements is explained in the comments found at
the beginning of the macro Basics. To further assist the first-time user, we will
explain how we prepared the data set for the total phosphorus case study.

The data for Falls Lake came from the North Carolina Division of Environmental
Management (DEM). It was part of a larger data set containing information on many
water quality variables. We chose to export the date vari lable total phosphorus,
total nitrogen, and observation number.

All of the variables in the data set were in a form that the SAS system could read
so they did not have to be transformed prior to entering them into a SAS data set.
The date was in numeric form, with a start date of January 1, 1960 equal to 1, and
all subsequent days were numerically ordered from this point (earlier dates would
have negative values moving back in time from 1/1/60). This is the same start date
as the SAS date variable; thus the date variable did not require transformation.

Naming of Macro Variables

Each of the macros run requires the user to list names for the variables to be
used within a given run. The variables that require names are listed in parentheses
directly after the macro name. These variables are also explamed in the comment
section at the beginning of each macro program.

The actual naming process occurs inside parentheses immediately following the
calling of a macro program. For example, the naming of the variables for the macro
program Basics can be seen on page 4 of Appendix D. Here, the data set to be
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used is FALLS; the variable to be examined is TP; the time variable is called DATE;
the title of the program js FALLS TEST DATA, and the program does have graphics
capability. Each of the macro variables requested is explained in the comment
section found on the second page of Appendix D. :

The variable names chosen must be identical to an existing variable name in the
data set being used. However, the variable names used can change each time the
program is run, as illustrated in the difference between the two correlation macro
programs found in Appendix D. There is no difference between these two macro
programs; they. simply use different variables to run the tests. The first CORR -
program uses the FALLS data set and the TP variable, while the second used the .
newly created C.ADJUST data set and ADJUSTED variable.

Saving Files

As with any SAS program if the user creates a data set to make |t permanent
the new data set must have a two level SAS name. Thus, the new data set created
in the ADJUST program is designated C.ADJUST, so that it can be used for later -
programs, If the user is interested only in creating temporary files, then the two s
level desrgnatlon found in many of the macros is not necessary.

The macros for this case study were run in a Batch mode, on a machine that did
not have expanded memory. Therefore, many of the. temporary data sets needed
for subsequent macro programs had to be stored outside the SAS-PC system. We .
used a "C.name" to designate them. The user is referred to the SAS User's Guide:
Basics (1989) for further explanatlon of saving data sets.

Graphics .

The system used in thrs case study lncluded the SASGRAPH program for
graphics. Hence, the designation of "YES" for the graphics option in each of the
macros. The user is referred to her/his specific system for details on device name
and the other specifics for the graphics system. It should be noted that the macros
allow considerable room for graphics modification, and should be adapted to suit the
needs of the user.

- If "NO" is designated for the graphics option, the program will still give the user a
few basic graphical illustrations of the data set. The only option omitted is the
bivariate time series graph, which is replaced by a printer plot of the data over time.







Appendix C: SAS Tabl Falls Lake Raw Data Set 1
PP e 1:25 Saturday, September 22, 1990

OBS OBS DATE TP TN NEWDATE MONTH DAY YEAR
1 1 8426 . . - 01/26/83 01 26 83
2 2 8456 . . 02/25/83 02 25 - 83
3 3 8486 . . 03/27/83 03 27 - 83
4 4 8516 0.07 0.58 04/26/83 04 26 83
5 5 8539 0.04 0.36 05/19/83 05 19 83
6 6 8579 0.05 0.36 06/28/83 06 - 28 83
7 7 8609 0.04 0.31 07/28/83 07 28 83
8 8 8643 0.04 0.51 08/31/83 08 31 83
9 19 8670 0.03 0.42 09/27/83 09 27 83
10 10 8699 0.03 0.71 10/26/83 10 26 83
11 11 8733 0.03 0.87 11/29/83 11 29 83
12 12 8748 . . 12/14/83 12 14 83
13 13 8774 0.07 0.85 01/09/84 01 09 84
14 14 8805 0.09 0.76 -+ 02/09/84 02 09 . 84
15 15 8839 0.10 0.72 03/14/84 03 14 84
16 16 8873 0.07 0.65 04/17/84 04 17 84
17 17 8901 0.04 0.45 05/15/84 05 15 84
18 18 8931 0.03 0.41 06/14/84 06 14 84
19 19 8966 0.02 0.41 07/19/84 07 19 84
20 20 8994 0.05 0.41 08/16/84 08 16 84
21 21 9026 0.04 0.51 09/17/84 09 17 84
22 22 9062 0.04 0.62 10/23/84 10 23 84
23 23 9085 0.04 0.73 11/15/84 11 15 84
24 24 9118 0.03 0.63 12/18/84 12 18 84
25 25 9161 0.03 0.85 01/30/85 01 30 85
26 26 9183 0.09 0.93 02/21/85 02 21 85
27 27 9210 0.05 0.71 03/20/85 03 20 85
28 28 9238 0.03 0.50 04/17/85 04 17 .. 85
29 29 9252 0.03 0.33 05/01/85 05 01 ' 85
30 30 9294 0.02 0.41 06/12/85 06 12 85
31 31 9322 0.04 0.41 07/10/85 07 10 85
32 32 9356 0.03 0.51 08/13/85 08 13 85
33 33 9398 0.02 0.41 09/24/85 09 24 85
34 34 9427 0.02 0.73 10/23/85 10 23 85
35 35 9449 0.03 0.94 11/14/85 11 14 85
36 36 9482 0.05 0.74 12/17/85 12 17 85
37 37 9512 0.04 0.76 01/16/86 01 16 86
38 38 9547 0.06 0.87 02/20/86 02 20 86
39 39 9567 0.06 0.80 03/12/86 03 12 86
40 . 40 9614 0.04 0.40 04/28/86 04 28 86
41 41 9643 0.04 0.31 05/27/86 05 27 86
42 42 9671 0.03 0.41 06/24/86 06 24 86
43 43 9693 0.02 0.41 07/16/86 07 16 86
44 44 9714 0.03 0.41 08/06/86 08 06 86
45 45 9769 0.01 0.41 09/30/86 09 30 86
46 46 9797 0.02 0.61 10/28/86 10 28 86
47 47 9818 0.03 0.94 11/18/86 11 18 86
48 48 9845 0.02 0.88 12/15/86 12 15 86
49 49 9876 . . 01/15/87 01 15 87
50 50 9895 .0.08 0.85 02/03/87 02 03 87
51 51 9945 0.08 0.55 03/25/87 03 25 87
52 52 9958 0.04 0.44 04/07/87 04 07 87
53 53 9994 0.04 0.41 05/13/87 05 13 87
54 54 10016 0.03 0.41 06/04/87 06 04 87

Table C1. Completed Data Set
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55
56
57
58
59
60

55
56
57
58
59
60

10043
10085
10119
10148
10178
10208

0.04
0.02
0.03
0.02

0.21
0.41
0.52
0.81

C-2

07/01/87
08/12/87
09/15/87
10/14/87
11/13/87
12/13/87

07
08
09
10
11
12

01l
12
15
14
13
13

87
87
87
87
87
87




FALLS TEST DATA 3
BASIC STATISTICS
16:58 Thursday, September 13, 1990

UNIVARIATE PROCEDURE

hriable=TP
Moments
N 53 Sum Wgts 53
Mean 0.040943 Sum 2.17
Std Dev 0.020406 Variance 0.000416
Skewness 1.222268 Kurtosis 1.013003
Uss 0.1105 CSS 0.021653
cv 49.83928 Std Mean 0.002803
T :Mean=0 14.60717 Prob>|T 0.0001
Sgn Rank 715.5 Prob>|S 0.0001
Num “= 0 53
W:Normal 0.859662 Prob<w 0.0001
Quantiles (Def=5)

100% Max 0.1 99% 0.1
75% Q3 0.05 95% 0.09 N
50% Med 0.04 90% 0.07
25% Q1 0.03 10% 0.02

0% Min 0.01 5% 0.02
1% 0.01

Range 0.09

Q3-Q1 0.02

Mode 0.03

Extremes
Lowest Obs Highest Obs
0.01( 45) 0.08( 50)
0.02( 58) 0.08( 51)
0.02( 56) 0.09( 14)
0.02( 48) 0.09( 26)
0.02( 46) 0.1¢ 15)

Missing Value
.Count 7
% Count/Nobs 11.67

Table C2. Univariate Moment Statistics




FALLS TEST DATA

PRINT OF DATA USED IN CORRELOGRAM

1

19:** Thursday, September 20, 1990
LAGGED UPPER LOWER
OBS TP CORRELATION STE LIMIT LIMIT
1 4] 1.00000 0.12910 0.25820 -0.25820
2 1 0.60342 0.22361 0.44721 -0.44721
3 2 0.22298 0.24927 0.49855 -0.49855
4 3 -0.09027 0.25258 0.50515 -0.50515
5 4 -0.26161 0.25311 0.50623 -0.50623
6 5 -0.26187 0.25758 0.51516 -0.51516
7 6 -0.24185 0.26198 0.52396 -0.52396
8 7 -0.28056 0.26567 0.53135 ~-0.53135
9 8 -0.17439 0.27057 0.54113 -0.54113
10 9 0.01384 0.27243 0.54487 -0.54487
11 10 0.22991 0.27245 0.54489 -0.54489
12 11 0.46544 0.27566 0.55132 -0.55132
13 12 0.56642 0.28846 0.57692 -0.57692
14 13 0.39239 0.30644 0.61288 -0.61288
15 14 0.11456 0.31470 0.62940 -0.62940
16 15 -0.03949 0.31540 0.63079 -0.63079

Table C3. Correlogram Statistics
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FALLS TEST DATA 1
PRINT OF DATA USED IN CORRELOGRAM
19:51 Thursday, September 20, 1990

LAGGED UPPER LOWER

OBS ADJUSTED CORRELATION STE LIMIT LIMIT
1 0 1.00000 0.12910 0.25820 =-0.25820
2 1 0.10560 0.22361 0.44721 -0.44721
3 2 0.16765 0.22444 0.44887 -0.44887
4 3 -0.11928 0.22651 0.45303 -0.45303
5 4 ~0.07445 0.22756 0.45512 ~0.45512
6 5 0.09431 0.22796 0.45593 ~0.45593
7 6 ~0.01524 0.22861 0.45723 -0.45723
8 7 0.02570 0.22863 0.45726 -0.45726
9 8 -0.00180 0.22868 0.45736 -0.45736
10 9 -0.00711 0.22868 0.45736 =-0.45736
11 10 0.16451 0.22868 0.45737 -0.45737
12 11 0.02589 0.23065 0.46129 -0.46129
13 12 ~0.10352 0.23069 0.46139 -0.46139
14 13 -0.20313 0.23147 0.46294 ~0.46294
15 14 -0.02947 0.23442 0.46884 -0.46884
16 15 -0.16716 0.23448 0.46896 -0.46896

Table C4. Correlogram Statistics ("Adjusted")
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FALLS TEST DATA 3
BASIC STATISTICS
12:19 Friday, September 14, 1990

UNIVARIATE PROCEDURE

Variable=TN
Moments
N 53 Sum Wgts 53
Mean 0.576604 Sum 30.56
std Dev 0.200758 Variance 0.040304
Skewness 0.340677 Kurtosis -1.1916
uss 19.7168 CSS 2.095789
cv 34.81726 sStd Mean 0.027576
T:Mean=0 20.90949 Prob>|T 0.0001
Sgn Rank 715.5 Prob>|S 0.0001
Num ~= 0 53
W:Normal 0.90432 Prob<W 0.0002
Quantiles(Def=5)

100% Max 0.94 99% 0.94
75% Q3 0.74 95% 0.93
50% Med 0.51 90% 0.87
25% Q1 0.41 10% 0.36

0% Min 0.21 5% 0.31
1% 0.21

Range 0.73

Q3-Q1 0.33

Mode 0.41

Extremes
Lowest Obs Highest Obs
0.21¢( 55) 0.87( 38)
0.31¢( 41) 0.88( 48)
0.31¢( 7) 0.93( 26)
0.33¢ 29) 0.94( 35)
0.36( 6) 0.94( 47)

Missing Value
Count

% Count/Nobs

11.67

Table C5. Univariate Moment Statistics for Nitrogen




Appendix D
List of SAS Programs
" and Files on Disk

Basics.sas - provides basic statistics and plots

Boxplt.sas - provides boxplots (can be by season or by year)

Corr.sas - provides estimates of serial correlation and plot of correlogram
Kens.sas - calculates Kendall test statistics (calls FORTRAN routines) .
Adjust.sas - detrends and deseasonalizes data series (for serial correlation check)
Corradj.sas - like Corr.sas; provides serial correlations for "adjusted"” series.

Kendall2,3,4.exe,for - FORTRAN programs used to calculate Kendall statistics.
"Kendall2" is structured for up to 20 years of 52-week seasons.
"Kendall3" is structured for up to 86 years of 12-month seasons, and may also be
chosen for quarterly-season data.
"Kendall4" is structured for up to 1040 years of 1-season (annual) data.

Falls.dat - Falls Reservoir data set used for examples in the guidance manual.

Out.dat, Tauin.ssd, Temp.dat - misc. files created during Falls Reservoir examples.




Appendix D
SAS Program Listings
Basics.sas

The following are graphic interface lines that set up the communication with the particular
graphics device used. The asterisk (*) in front of an option turns that option off; If the asterisk

for the second GOPTIONS line is removed then that set of specifications determines the
graphics output. In this example, the graphics are being sent to a laserjet printer (HPLJS2).

GOPTIONS RESET=ALL{DEVICE=HPLJS2]NOROTATE GACCESS='SASGASTD>LPT1.'
HBY=1 FBY=CENTX;

*GOPTIONS RESET=ALL REVICE=HPL.
HBY=1 FBY=CENTX HSIZE= 5.5 VSIZE =
HORIGIN=1.325 VORIGIN=1 NOFILL NOPOL
FTEXT=CENTX HTEXT=1 ;

OPTIONS PAGESIZE=56 MPRINT MISSING="";

OPFATE GACCESS='SASGASTD>LPT1:'

Select display device

DATA FALLS; (¢.g., printer)
INFILE 'A:FALLS1.DAT" FIRSTOBS=2 end=eof;

INPUT OBS DATE TP TN ; \
Identify data set and variables

The following are program lines to modify the data set to create a NEWDATE variable,
insert points (.) for missing values, and to consolidate zll the day values to the same
day each month (for ease in visual presentation_). These changes may not be
hecessary for other data sets.

NEWDATE= PUT(DATE,MMDDYY8.);
MONTH=SUBSTR(NEWDATE, 1,2);
DAY=SUBSTR(NEWDATE 4,2);
YEAR=SUBSTR(NEWDATE,7,2);

output,

if eof then do;

tp=;
month='01";day="01";year='83";output;
month='02";day="01";year='83";output;
month="03";day="'01";year="'83";output;
month='12";day="01";year="'83";output;
month="11";day='01";year='87";output;
month='12";day="'01";year='87";output;
end;

proc sort data=falls;by year month day;

proc means data=falls noprint;

by year month ; ‘

var(ip; ) Identify variable for trend analysis
output out=falls mean=tp;
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data falls;

set falls;

length mo da yr 8.;
mo=month;

da=l;

yr=year;
date=mdy(mo,da,yr);

RUN;

%MACRO BASICS(DATA,VAR,TIME,TITLE1,GRAPHICS);

F¥ddddkokdokkkkkk kb kb kb ok kkkkkkkk ko kg

BASICS - BASIC STATISTICS, HISTOGRAM AND BIVARIATE PLOT

INPUTS: DATA = SAS DATA SET CONTAINING TEST INFORMATION
VAR = SINGLE VARIABLE OF INTEREST FOR WHICH THE
DIAGNOSTICS WILL BE PERFORMED
TIME = SAS VARIABLE REPRESENTING SEQUENTIAL TIME
TITLE1 = FIRST OUTPUT TITLE
GRAPHICS = YES FOR FANCY GRAPHICS, NO FOR PRINTER PLOTS
NOTE: IF YES, THEN THE USER MUST PROVIDE
AT MINIMUM A DEVICE DRIVER AND POSSIBLY OTHER
OTHER GRAPHICS CONTROLS (E.G. GACCESS, =
HSIZE, BORDER, ETC.) IN A GOPTIONS STATEMENT

DATA ASSUMPTIONS:
- ONE OBSERVATION PER TIME PERIOD
- MISSING OBSERVATIONS ARE ALLOWED:

EEREEREEE ** ** uk Fhrxten
*** PLOT DATA, AND OUTPUT STATISTICS AR
e % TR RE R ek **.

PROC PRINT DATA=&DATA,
TITLE1 "&TITLE1";

PROC UNIVARIATE NORMAL PLOT;
VAR &VAR;
TITLE2 "BASIC STATISTICS";

PROC CHART DATA=&DATA;
VBAR &VAR/ MIDPOINTS=.01 TO .10 BY .005;
TITLE2 "FREQUENCY HISTOGRAM FOR &VAR";

PROC SORT DATA=&DATA; BY &TIME;
PROC REG DATA=&DATA; MODEL &VAR=&TIME;
OUTPUT OUT=0UT P=P;

TITLE1 "&TITLEL";
TITLE2 "LINEAR REGRESSION : & VAR=&TIME";
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%IF &GRAPHICS=YES %THEN %DO;

SYMBOL1 C=WHITE V=NONE L=1 I=JOIN W=1;
SYMBOL2 C=WHITE V=NONE L~=2 I=JOIN W=1;

DATA TEMP;

SET OUT;

KEEP CLASS PVAR &TIME;
CLASS=1;PVAR=&VAR;OUTPUT;
CLASS=2;PVAR=P;OUTPUT;

PROC FORMAT;

VALUE FX
1="OBSERVED VALUES "
2=PREDICTED VALUES'

H

PROC GPLOT DATA=TEMP;
PLOT PVAR*&TIME=CLASS /HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGENDI;
AXIS1 LABEL~(H=1 F=CENTX 'Date")
WIDTH=I
VALUE=(F=CENTX);
AXIS2 LABEL=(H=1 R=0 A=90 F=CENTX "&VAR") WIDTH=1
VALUE=(F=CENTX);
LEGENDI1 LABEL=(H=1 F=CENTX 'Legend: ")
VALUE=(F=CENTX);
FORMAT &TIME MMDDYY8. CLASS FX.;
TITLE1 H=1 F=CENTX "&TITLE1";
TITLE2 F=CENTX H=1
'Plot of Observed and Linear Regression Model Predictions Against Time';

%END;
%ELSE %DO;

PROC PLOT DATA=0UT;

PLOT &VAR*&TIME='0Q' P*&TIME="P/OVERLAY;

LABEL &TIME ='TIME";

FORMAT &TIME MMDDYYS.;

TITLE2 "PLOT OF &VAR (0O) AND PREDICTED VALUES(P) AGAINST TIME";
%END;

RUN;

%MEND BASICS;

The following are the program variables chosen for the example run. The variables can be changed for each run of
the macro, which is invoked by "%tBASICS" followed by the necessary variables in pai*enthescs.

%BASICS(DATA=FALLS,

VAR=TP,

TIME=DATE, ‘

TITLE1=Figure 3.4. FALLS TEST DATA, €———— Variables in the Basics Macro
GRAPHICS=YES are defined here.

)
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Boxpit.sas

The following graphic interface lines determine the features of the graphic output (screen display or printer
output). For example, Figure 3.5 was printed (on the HP laserjet printer) using the second GOPTIONS
statement; this statement was invoked by simply removing the asterisk at the beginning of the line.:

GOPTIONS RESET=ALL DEVICE=HPLJS2 GACCESS='"SASGASTD>LPT1:' HBY=1
FBY=CENTX; :
*GOPTIONS RESET=ALL DEVICE=HPLJS2 ROTATE GACCESS="SASGASTD>LPT1:'
HBY=1 FBY=CENTX HSIZE=8 VSIZE=5.5 NOBORDER
HORIGIN=1.5 VORIGIN=1.5 NOFILL NOPOLYGONFILL
FTEXT=CENTX HTEXT=1 ;
OPTIONS PAGESIZE=56 MPRINT MISSING="";

DATA FALLS;
INFILE 'A:FALLS1.DAT' FIRSTOBS=2 end=eof;

INPUT OBS DATE TP TN ; -
- ‘\ ldentify data set and

variables

The following are program lines to modify the data set to create a NEWDATE variable, insert points (.) for
missing values, and to consolidate all of the day values to the same day each month (for ease in visual
presentation). These manipulations may not be necessary for other data sete. '

NEWDATE= PUT(DATE,MMDDYY8.);
MONTH=SUBSTR(NEWDATE, 1,2);
DAY=SUBSTR(NEWDATE 4,2);
YEAR=SUBSTR(NEWDATE,7,2);

output;

if eof then do;
tp=.;
month="01';day="01";year="'83";output;
month='02';day="01";year='83";output;
month='03";day="'01";year='83";output;
month='12";day="01";year='83";output;
month='11";day='01";year='87";output;
month='12";day="01";year="87";output;
end;

proc sort data=falls;by year month day;
proc means data=falls noprint;

by year month ;

var tp;

output out=falls mean=tp,

<« Identify variable for
analysis

data falls;

set falls;

length mo da yr 8.;
mo=month;

da=1;

yr=year;
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date=mdy(mo,da,yr);
RUN;

hkkkkE® * xk *

SAS MARCOS FOR CREATING A BOXPLOT USING SAS GPLOT
PROCEDURES. MACROS NEEDED INCLUDE:

1. %MACRO NOBS

2. %MACRO ORDER

3. %MACRO BOXVARS

4. %MACRO BOXPLOT

AN EXAMPLE CALL USING THE MOST INTERESTING OPTIONS IS PROVIDED.

DO NOT USE A STATEMENT STYPE CALL. IF A PARAMETER VALUE CONTAINS
PARENTHESES, COMMAS OR EQUALS SIGNS, MAKE IT THE ARGUMENT OF THE
%STR FUNCTION: PARAMETER=%STR(VALUE).

THE MACROS ARE TAKEN FROM A PAPER IN SUGI 10 PROCEEDINGS, P. 890.
AUTHOR: ANN OLMSTED, SYNTEX RESEARCH

DESCRIPTION:
THE BASIC BOX:
FOR EACH VALUE OF YOUR CLASS VARIABLE, WHICH MUST BE NUMBERIC,
THE PROGRAM DRAWS A RECTANGLE WITH A LINE PASSING THROUGH IT AT THE
PERCENTILE &MIDDLE, LOWER AND UPPER EDGES AT PERCENTILES
&LO_EDGE AND &HI_EDGE, AND WHISKERS EXTENDING TO &LO_WHISK AND
&HI_WISK. A PLUS SIGN MARKS THE MEAN.

&LO_WHISK, &LO_EDGE, &MIDDLE, &HI_EDGE, AND &HI_WHISK DEFAULT

TO MIN, P25, P50, P75, AND MAX. IF YOU SPECIFY THEIR VALUES,

YOU MAY CHOSE FROM: MIN, P1, P5, P10, P25, P50, MEAN, P75,

P90, P95, P99, MAX,

THE PERCENTILES ARE COMPUTED BY PROC UNIVARIATE USING THE DEFAULT
METHOD.

VARIABLE BOX WIDTH: ‘
YOU CAN CONTROL THE WIDTH OF THE BOXES THROUGH THESE PARAMETERS:
K — HALFWIDTH OF WIDEST BOX. IF KA IS NOT GIVEN, THE

PROGRAM WILL SET IT TO .9*(MIN SPACING BET. CLASS VALUES)
FN-- ANY FUNCTION OF THE GROUP SIZE, E.G., 1, SQRT(N), N.
BOXWIDTHS WILL BE PROPORTIONAL TO F(N). THE DEFAULT
IS 1 (CONSTANT BOXWIDTH)
OVERLAP -- SET TO 1 (TRUE) TO PERMIT BOXES TO OVERLAP, OR
0 (FALSE) TO ENABLE THE PROGRAM TO OVERRIDE YOUR
VALUE OF K IF IT WOULD RESULT IN OVERLAP. THE
DEFALUT IS 0 NO OVERLAP PERMITTED)

WAISTS (CONFIDENCE INTERVALS FOR THE MEDIAN).
THE BOXES WILL BE NOTCHED TO INDICATE A CONFICENCE INTERVAL
FOR THE MEDIAN IF THE MACRO IS CALLED WITH WAIST=1. SET
PARAMETER F (DEPTH OF THE NOTCH AS A FRACTION OF THE HALFWIDTH)
TO A VALUE BETWEEN 0 AND 1.

WAISTTYP=ORDER:
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SET LEVELTAR TO YOUR DESIRED MINIMUM CONFIDENCE LEVEL (E.G.,
90 OR .95). THE PROGRAM GOES INTO A LOOP TO SELECT INTEGERS
R,S (1 <=R <S <=N) S.T.

P ( X(R) <=MEDIAN <=X(S) ) >= &LEVELTAR.
THEN USES THE SAMPLE ORDER STATISTICS X(R), X(S) TO DEFINE THE
NOTCH.

WAISTTYP=TUKEY:
SET TUKCONST TO THE DESIRED MULTIPLE OF THE GAUSSIAN ASYMPTOTIC
STANDARD DEVIATION OF THE MEDIAN S_HAT=

(1/1.08)(P75-P25)/SQRT(N).

THE VALUES P50 - & TUKCONST*S_HAT, P50 + & TUKCONST*S_HAT ARE
USED TO DEFINE THE NOTCH.

*gedkk kxk * *kk

%MACRO NOBS(DATA=_LAST );

DATA _NULL_;
POINT=1;
SET &DATA POINT=POINT NOBS=NOBS;
PUT NOBS " OBS IN DATASET &DATA " /;
%GLOBAL NOBS;
CALL SYMPUT(NOBS', TRIM(LEFT(NOBS)));
STOP;
RUN;

%MEND NOBS;

%MACRO ORDER(P=.5,LEVELTAR=.90);

PROC SORT DATA=WORK OUT=SORTDATA;
BY &CLASS &VAR;

DATA RANKDATA N (KEEP=&CLASS RANK RENAME=(RANK=N));
SET SORTDATA; '
BY &CLASS;

IF(FIRST.&CLASS) THEN DO;
RANK=0;

END;

RANK+I;

OUTPUT RANKDATA;

IF(LAST.&CLASS) THEN DO;
OUTPUT N;

END;

%LET PROB=(PROBBNML(&P,N,S-1) - PROBBNML(&P, N,R- 1) )
DATA RS (KEEP=N &CLASS R S LEVEL);
SET N;
R=FLOOR( (N+1)*&P) - ( N+1)*&P=FLOOR((N+1)*&P) );
S=R+1;
STEPR=1;
DO WHILE ( (&PROB <&LEVELTAR) AND ((R>1) OR (S<N)) );
IF ( STEPR) THEN DO;
R=R-~(R>1);
END; ELSE DQ;
8=8+(S<N);




END;
STEPR=1-STEPR;
END;
LEVEL=&PROB;
IF (LEVEL < &LEVELTAR) THEN DO;
PUT &CLASS=N=R=S=LEVEL~=
/"NOTE: FAILURE TO ACHIEVE CONF. LEVEL &LEVELTAR" /;
END;
DATA WAIST(KEEP=&CLASS N R S LEVEL RVAL SVAL);
MERGE RANKDATA RS;
BY &CLASS;
RETAIN RVAL;
IF(RANK=R) THEN DO;
RVAL=&VAR;
END;ELSE IF ( RANK=S) THEN DO;
SVAL=&VAR;
OUTPUT;
END; ‘
PROC PRINT DATA=WAIST LABEL;
VAR &CLASS NR S RVAL SVAL LEVEL;
LABELN = "n"
R = l!rﬂ
S - "S"
RVAL= "x(@"
SVAL= "x(s)";
TITLE] "DATASET: WAIST(SOURCE: &DATA),VARIABLE: &VAR";
TITLE2 "(X(R),X(S)) FORMS A LEVEL LEVEL CONFIDENCE INTERVAL FOR";
TITLE3 "QUANTILE &P";
TITLE4 "THE TARGET CONFIDENCE LEVEL WAS &LEVELTAR";
%MEND ORDER;

%BMACRO BOXVARS;

&LO_WHISK

%IF ( &LO_EDGE NE &LO_WHISK) %THEN %DO;
&LO_EDGE

%END;

%IF ( &MIDDLE NE &LO_EDGE) %THEN %DO;
&MIDDLE

%END;

%IF( &HI_EDGE NE &MIDDLE) %THEN %DO;
&HI_EDGE

%END;

%IF ( &HI_WHISK NE &HI_EDGE) %THEN %DO;
&HI_WHISK

%END;

%MEND BOXVARS;

%LET LARGENUM=1E23;
%LET SMALLNUM=-1E23;
%MACRO BOXPLOT(DATA=_LAST_,OUT=, /*INPUT AND OUTPUT FILES  */

CLASS=,VAR=, /* CLASS AND PLOTTING VARIABLES */
/* MUST BE NUMERIC */

K=, - [*HALFWIDTH OF WIDEST BOX  */

FN=1, /* 1/SQRTN)/N OR PROPORTIONAL */
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WAIST=0,
WAISTTYP=ORDER,
LEVELTAR=.90,
TUKCONST=1.7,
F=1,

LO_WHISK=MIN,

/* TOF(N) *

/* 0/1=NO WAISTS/WAISTS ~ */

/* ORDER/TUKEY */

/* TARGET CONF. LEVEL IF WAISTTYP ¥/

/* =ORDER */

/* WAIST INT=MED +- TUKCONST*S_HAT */
/* IF WAISTTYP=TUKEY */

/* NOTCH DEPTH (AS FRACTION OF */

/* HALFWIDTH FOR WAISTED PLOTS */

/* PLOTTED RANGES AND PERCENTILES */

LO_EDGE=P25,

MIDDLE=P50,

HI_EDGE=P75,

HI_WHISK=MAX,

KLUDGE=0,

LO_MARK=P25,

HI_MARK=P75,

V_LO=,V_HI=V_BY=, /* PLOTTING RANGES FOR VERTICLE */

/* AXIS */

CONNECT=1, ‘ /*0/1 -- SET TO 1 TO CONNECT . */

OVERLAP=(, /*0/1 -- SET TO 1 TO ALLOW OVERLAP */
TITLE1=,TITLE2=, /* TITLES */

CLASSFMT=, /* FORMAT FOR CLASS VARIABLE %/

VARFMT=, /* FORMAT FOR PLOTTED VARIABLE */

CLASSLAB=, /* CLASS VARIABLE LABEL *

VARLAB-=, /* PLOTTED VARIABLE LABEL */

VERBOSE=1 /*0/1 - SET TO 1 FOR PRINTOUTS */

)

%IF ( &MIDDLE NE P50 ) AND (&WAIST) %THEN %DO;
%PUT PROGRAM DOES NOT COMPUTE CONFIDENCE INTERVALS FOR &MIDDLE;
%LET WAIST=0;

%END;

%IF( NOT &WAIST) %THEN %DO;

%LET WAISTTYP=;

%END;

%IF( %QUOTE(&V_LO&V_HI&V_BY) NE) %THEN %DO;
%IF( %QUOTE(&V_LO)=) OR

( %QUOTE(&V_HID)=) OR
( %QUOTE(&V_BY)= ) %THEN %DO;
%PUT INCOMPLETE VAXIS SPECIFICATION IGNORED;
%LET V_LO=; %LET V_HI=; %LET V_BY=;
%END;
%END;

DATA WORK;
SET &DATA(KEEP=&CLASS &VAR);
IF(&CLASS > .Z) AND ( &VAR >.Z);
PROC SORT DATA=WORK;
BY &CLASS &VAR;
PROC UNIVARIATE DATA=WORK NOPRINT;
BY &CLASS;
OUTPUT OUT=SUMMARY
MEAN=MEAN N=N MIN=MIN P1=P1 P5=P5 P10=P10 Q1=P25 MEDIAN=P50
Q3=P75 P90=P90 P95=P95 P99=P99 MAX=MAX;
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%IF( &WAISTTYP=ORDER) %THEN %DO;
%ORDER(LEVELTAR=&LEVELTAR)
%END;

DATA _NULL_;

SET SUMMARY(KEEP=&CLASS N) END=LASTOBS;

RETAIN KCOMP &LARGENUM FMAX &SMALLNUM,;

SPAN=DIF(&CLASS);

IF(_N_>1) THEN DO;
KCOMP=MIN(KCOMP,SPAN/2);

END;

FMAX=MAX(FMAX,&FN);

IF(LASTOBS) THEN DO;
CALL SYMPUT(KCOMP' TRIM(LEFT(KCOMP)));
PUT ' MAXIMUM POSSIBLE HALFWIDTH FOUND TO BE : ' KCOMP /;
CALL SYMPUT(FMAX', TRIM(LEFT(FMAX)));
PUT ' FMAX: ' FMAX /;

END;
RUN;

%LET TRIM_HI=0;

%LET TRIM_LO=0;

DATA BOXDATA(KEEP=&CLASS X Y);

%IF(&WAISTTYP NE ORDER) %THEN %DO;
SET SUMMARY END=LASTOBS;

%END; %ELSE %DO;

MERGE SUMMARY WAIST END=LASTOBS;

%END;

BY &CLASS;

RETAIN KCOMP &KCOMP K &K HALFWID;

IF( _N_ =1) THEN DO;

IF( K<=0) THEN DO;
K=9*KCOMP;
END;ELSE DO;
%IF (NOT &0OVERLAP) %THEN %DO;
K=MIN(K , 0.9*KCOMP);
%END; %ELSE %DO;
IF(K > KCOMP) THEN DO;
PUT ' NOTE: K=' K ' KCOMP=' KCOMP ' BOXES WILL OVERLAP' /;
END;
%END;
END;* K > 0 ELSE;
END;
IF(FIRST.&CLASS) THEN DO;
HALFWID=K * &FN/&FMAX;

%IF ( &WAISTTYP=TUKEY) %THEN %DO;
S_HAT=(1/1.08)*(P75-P25)/SQRT(N);
L2=&TUKCONST*S_HAT;

RVAL~=P50-L2;

SVAL=P50+L2;
%END;

END;
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X=&CLASS ;Y=&LO_WHISK; OUTPUT;
X=&CLASS ;Y=&LO_EDGE ; OUTPUT;
X=&CLASS-HALFWID;Y=&LO_EDGE;OUTPUT;
%IF (&WAIST) %THEN %DO;
X=&CLASS-HALFWID;Y=RVAL;OUTPUT;
X=&CLASS-(1-&F)*HALFWID;Y=&MIDDLE; OUTPUT
X=&CLASS-HALFWID;Y=SVAL;OUTPUT;
%END;
X=&CLASS-HALFWID;Y=&HI_EDGE;OUTPUT;
X=&CLASS;Y=&HI_EDGE;OUTPUT;
X=&CLASS;Y=&HI_WHISK;OUTPUT;
X=&CLASS;Y=&HI_EDGE;OUTPUT;
X=&CLASS+HALFWID;Y=&HI_EDGE;OUTPUT;
%IF ( &WAIST) %THEN %DO;
X=&CLASS + HALFWID; Y=SVAL;OUTPUT;
%END;
X=&CLASS + (1-&WAIST*&F)*HALFWID;Y=&MIDDLE;OUTPUT;
X=&CLASS - (1-&WAIST*&F)*HALFWID;Y=&MIDDLE;OUTPUT;
X=&CLASS + (1-&WAIST*&F)*HALFWID;Y=&MIDDLE;OUTPUT;
%IF (&WAIST) %THEN %DO;
X=&CLASS + HALFWID; Y=RVAL; OUTPUT;
%END;
X=&CLASS + HALFWID; Y=&LO_EDGE; OUTPUT
X=&CLASS; Y=&LO_EDGE; OUTPUT;
%IF( %QUOTE(&V_LO) NE ) %THEN %DO;
%PUT V_LO=&V_LO;
RETAIN MAXHI MAXHI_ED &SMALLNUM MINLO MINLO_ED &LARGENUM;
MAXHI=MAX(&HI_WHISK,MAXHD);
MAXHI_ED=MAX(&HI_EDGE,MAXHI_ED);
MINLO_ED=MIN(&LO_EDGE ,MINLO_ED);
MINLO=MIN(&LO_WHISK ,MINLO);
IF (LASTOBS ) THEN DO;
REF=&V_BY * FLOOR((MAXHI_ED - MINLO_ED)/&V_BY);
C_HI=REF+&V_BY *
( FLOOR( (MAXHI_ED-REF)/&V_BY) + 1);
C_LO=REF-&V_BY*
(FLOOR( (REF-MINLO_ED)/&V_BY) + 1);
V_HI=MAX(&V_HI,C_HI);
V_LO=MIN(&V_LO,C_LO); ,
CALL SYMPUT(V_HI',TRIM(LEFT(V_HD)); PUT V_HI=;
CALL SYMPUT('V_LO',TRIM(LEFI‘(V_LO))); PUT V_LO=;
TRIM_HI=(MAXHI > V_HI);PUT MAXHI=
TRIM_LO=MINLO <V_LO);PUT MINLO = '
CALL SYMPUT('TRIM_HI' TRIM(LEFI‘(TRIM HI))); PUT TRIM_HI =

CALL SYMPUT(TRIM_LO', TRIM(LEFT(TRIM_LQ))); PUT TRIM LO =
END;

RUN;
%END;

%IF( &TRIM_HI) OR (&TRIM_LO) %THEN %DO;

DATA BOXDATA (KEEP=&CLASS X Y TRIMMED) :
TRIM (KEEP=SRTCLASS XY RENAME—'(SRTCLASS-&CLASS)),
SET BOXDATA END=LASTOBS;

RETAIN SRTCLASS 4E23 V_HI &V_HI V_LO &V_LO;
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TRIMMED=0;
%IF ( &TRIM_HI) %THEN %DO;
IF(Y > V_HI) THEN DO;
Y=V_HI; TRIMMED=1;TRIMCT+1;0UTPUT TRIM;
END;
%END;
%IF(&TRIM_LO) %THEN %D0O;
IF(Y< V_LO) THEN DO;
Y=V_LO;TRIMMED=1;TRIMCT+1;0UTPUT TRIM;
END;
%END;
IFQLASTOBS) THEN DQ;
PUT TRIMCT ' Y-VALUES TRIMMED' /;
END;
OUTPUT BOXDATA;

PROC PRINT DATA=TRIM LABEL N;
VAR XY &CLASS;
LABEL X="X (&CLASS)"
Y="Y(V_HI/V_LO)"
&CLASS="FAKE &CLASS VALUE";
TITLE1 "CONTENTS OF TRIM (SOURSE DS &DATA, OUTPUT DS &COUT)";
%END;
%IF ( &VERBOSE) %THEN %DO;
PROC PRINT DATA=BOXDATA;
TITLE1 "CONTENTS OF BOXDATA( SOURCE DS &DATA, OUTPUT DS &0UT)";
%END;

DATA MEANS (KEEP=&CLASS XY);
SET SUMMARY(KEEP=&CLASS MEAN RENAME=(&CLASS=X MEAN=Y));
RETAIN &CLASS 1E23;
%IF(&VERBOSE) %THEN %DO;
PROC PRINT DATA=MEANS LABEL;
VAR XY &CLASS;
LABEL X="X(&CLASS)"
Y="Y(MEAN)"
&CLASS="FAKE &CLASS VALUE";
TITLE1 "CONTENTS OF MEANS (SOURCE DS &DATA, OUTPUT DS &0UT)";
%END;

%IF(&CONNECT) %THEN %DO,
DATA CONNECT(XEEP=&CLASS X Y);
SET SUMMARY(KEEP=&CLASS &MIDDLE RENAME=(&CLASS=X &MIDDLE=Y));
RETAIN &CLASS 2E23;
%IF(&VERBOSE) %THEN %DO;
PROC PRINT DATA=CONNECT LABEL;
VAR XY &CLASS;
LABEL X="X(&CLASS)"

Y="Y(&MIDDLE)"

&CLASS="FAKE &CLASS VALUE"; '
TITLE1 "CONTENTS OF CONNECT(SOURCE DS &DATA, OUTPUT DS &OUT)";
%END; o
%END;
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%IF(&KLUDGE) %THEN %DO;

DATA KLUDGE(KEEP=SRTCLASS XY LABEL RENAME-—(SRTCLASS——&CLASS)),
MERGE WORK(RENAME=(&VAR=Y)) SUMMARY (KEEP=&CLASS &LO_MARK &HI MARK),
BY &CLASS;

RETAIN SRTCLASS 3E23;

LENGTH LABEL $20;

X=&CLASS;

IF(Y<&LO_MARK) THEN DO;

LABEL="< &L.O_MARK";
%IF(%QUOTE(&V_LO) NE ) %THEN %DO;
IF(Y < &V_LO) THEN DO;
LABEL=TRIM(LABEL)|/',OFF PLOT";
END;
%END;
OUTPUT;
END; ELSE IF (Y > &HI_MARK) THEN DO;
LABEL="> &HI_MARK";
%IF (%QUOTE(&V_HI) NE ) %THEN %DO;
IF (Y > &V_HI ) THEN DO;
LABEL=TRIM(LABEL)||', OFF PLOT";
END;
%END;
OUTPUT;

END;

%IF( &VERBOSE) %THEN %DO;

PROC PRINT DATA=KLUDGE LABEL;

VAR X Y LABEL &CLASS;

LABEL X="X(&CLASS)"
Y="Y(<&LO_MARK,>&HI_MARK)"
&CLASS="FAKE &CLASS VALUE";

TITLE1 "CONTENTS OF KLUDGE(SOURCE DS &DATA, OUTPUT DS &0OUT)";

%END;

%END;

DATA CBOXDATA;
SET BOXDATA MEANS

%IF(&CONNECT) %THEN %DO;
CONNECT

%END;

%IF(&KLUDGE) %THEN %DO;
KLUDGE

%END;

%IF(&TRIM_HI OR &TRIM_LO) %THEN %DO;
TRIM

%END;

.
2

%MACRO LABEL;

LABEL Y="&VARLAB";

LABEL X="&CLASSLAB";;

%MEND LABEL;

%MACRO FORMAT;

%IF(&VARFMT NE ) %THEN %DO; FORMAT Y &VARFMT; %END;
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%IF(&CLASSFMT NE ) %THEN %DO; FORMAT X &CLASSFMT; %END;
%MEND FORMAT;

bad A Ll A2 2t 122

ADD GOPTIONS

SRR Rk Rk ERE,.
3

%NOBS(DATA=SUMMARY)

%LET S=1;
SYMBOL&S R=&NOBS I=JOIN L=1 COLOR=WHITE W=2;* BOXES;

%LET S=%EVAL(&S+1);

SYMBOL&S R=1 I=NONE COLOR=WHITE V=PLUS W=2;* MEANS;
9%IF(&CONNECT) %THEN %DO;

%LET S=%EVAL(&S+1);

SYMBOL&S R=1 I=JOIN L=1 COLOR=WHITE W=2;* CONNECT MEDIANS;
%END;

%IF (&KLUDGE) %THEN %DO;

%LET S=%EVAL(&S+1);

SYMBOL&S R=1 I=NONE COLOR=WHITE V=X W=2; * MAKE LKUDGE MARKS;
%END;

%IF(&TRIM_HI OR &TRIM_LO) %THEN %DO;

%LET S=%EVAL(&S+1);

SYMBOL&S R=1 I=NONE COLOR=WHITE V=TRIANGLE W=2;*MAKE TRIM MARKS;
%END;

PROC GPLOT DATA=CBOXDATA ;
PLOT Y*X=&CLASS/NOLEGEND HAXIS=AXIS1 VAXIS=AXIS2

’

AXIS1 LABEL=(H=1 F=CENTX &CLASSLAB)
WIDTH=2
VALUE=~F=CENTX);

AXIS2 LABEL=(H=1 R=0 A=90 F=CENTX
&VARLAB ) WIDTH=2
ORDER=&V_LO TO &V_HI BY &V_BY
VALUE=(F=CENTX);

TITLE1 F=SWISS H=1 "& TITLE1";

TITLE2 F=SWISS H=1 "&TITLE2";

%FORMAT;

RUN;

%MEND BOXPLOT;

%BOXPLOT(
DATA=FALLS,
CLASS=MO,
VAR=TP,
CLASSFMT=,
CLASSLAB=%STR(MONTHY),
VARLAB=%STR(TOTAL PHOSPHORUS (mg/L)),
VERBOSE=0,
F=.5,
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WAISTTYP=TUKEY,

CONNECT=0,

WAIST=1,

TITLE1=Figure 3.5 Falls Lake Data,
TITLE2=Seasonal Boxplots for Total Phosphorus,
V_LO=0,V_HI=12,V_BY=.02

)

The lines above in the %BOXPLOT parentheses are used to: identify the dataset (DATA=FALLS), define the box
classes (usually year or month; here CLASS=MO), identify the trend water quality variable (VAR=TP), define
graph axis labels (CLASSLAB=%STR('MONTH’), YARLAB=%STR('TOTAL PHOSPHORUS (mg/L)"), define graph
titles (TITLE1=Figure 3.5 Falls Lake Data, TITLE2=Seasonal Boxplots for Total Phosphorus), and specify the
graph axis ranges and increments (V_LO= O,V_HI=.12,Y_BY=.02). The increments were determined by trial and
error printouts; see Figure 3.5 in the text for the final result.




Corr.sas

The following graphic interface lines determine the features of the graphic output (screen display or printer
output). For example, Figure 3.7 was printed (on the HP laserjet printer) using the second GOPTIONS
statement; this statement was invoked by simply removing the asterisk at the beginning of the line.

GOPTIONS RESET=ALL DEVICE=EGA ROTATE GACCESS='SASGASTD>LPT1:' HBY=1
FBY=CENTX ;
*GOPTIONS RESET=ALL DEVICE=HPLJS2 GACCESS='SASGASTD>LPT1.'
HBY=1 FBY=CENTX HSIZE= 5.5 VSIZE =8 NOBORDER
HORIGIN=1.325 VORIGIN=1 NOFILL NOPOLYGONFILL
FTEXT=CENTX HTEXT=1 ; .
OPTIONS PAGESIZE=56 LINESIZE=80 MPRINT MISSING="'";

DATA FALLS;
INFILE 'A:FALLS1.DAT' FIRSTOBS=2 end=eof;,

INPUT OBS DATE TP :
SDA ™ <\ Identify data set and

variables

The following are program lines to modify the data set to create a NEWDATE variable, insert points (.) for
missing values, and to consolidate all of the day values to the same day each month (for ease in visual
presentation). These manipulations may not be necessary for other data sets.

NEWDATE= PUT(DATE,MMDDYY$.);
MONTH=SUBSTR(NEWDATE, 1,2);
DAY=SUBSTR(NEWDATE,4,2);
YEAR=~SUBSTR(NEWDATE,7,2);

output;
if eof then do;

tp=;

month="01";day="01";year='83";output;
month='02";day='01";year="83";output;
month='03";day="01";year="83";output;
month='12";day="01";year='83";output;
month="11';day="01";year='87";output;
month='12";day='01";year="87";output;
end;

proc sort data=falls;by year month day;

proc means data=falls noprint;
by year month ; .
var tp; < Identify variable for

output out=falls mean=tp; analysis

data falls;
set falls;
length mo da yr 8,;
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mo=month;

da=1;

yr=year;
date=mdy(mo,da,yr);

RUN;

%MACRO CORR(DATA,VAR,TIME,NOBS,TITLE1);
*¥

%Xk

*kkkEkkE

CORRELOGRAM: PLOT AND PRINT

INPUTS: DATA = SAS DATA SET CONTAINING TEST INFORMATION
VAR = SINGLE VARIABLE OF INTEREST FOR WHICH THE
DIAGNOSTICS WILL BE PERFORMED
TIME = SAS VARIABLE REPRESENTING SEQUENTIAL TIME
NOBS = NUMBER OF OBSERVATIONS
(MISSING + NONMISSING)
TITLE1 = FIRST OUTPUT TITLE

DATA ASSUMPTIONS:
- ONE OBSERVATION PER TIME PERIOD
- MISSING OBSERVATIONS ARE ALLOWED:

22222222222 22222222 22 ] * ¥k

*** PLOT DATA, AND OUTPUT STATISTICS e,

*Ekkkkkkk *¥kkk *.

PROC SORT DATA=&DATA;BY &TIME;

DATA CORR;

SET &DATA;
LAGO=&VAR;
LAG1=LAG1(&VAR);
LAG2=LAG2(&VAR);
LAG3=LAG3(&VAR);
LAG4=LAGA4(&VAR);
LAG5=LAG5(&VAR);
LAG6=LAG6(&VAR);
LAG7=LAG7(&VAR);
LAG8=LAG8(&VAR);
LAG9=LAG(&VAR);
LAG10=LAG10(&VAR);
LAG11=LAG11(&VAR);
LAG12=LAGI12(&VAR);
LAG13=LAGI13(&VAR);
LAG14=LAG14(&VAR);
LAG15=LAGI5(&VAR);

PROC CORR DATA=CORR noprint out=out ;
VAR LAGO0 LAG1 LAG2 LAG3 LAG4 LAG5 LAG6 LAG7 LAG8 LAG9 LAG10
LAG11 LAG12 LAGI13 LAG14 LAGIS;
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DATA OUT;
SET OUT; 1
KEEP LAG0-LAG15 STE(0-STE15 UPPER(O-UPPER15 LOWERO0-LOWERI1S5;
ARRAY V1{16} LAG0-LAGI1S5;
ARRAY V2{16} STE0-STE1S5;
ARRAY V3{16} UPPERO-UPPERI1S;
ARRAY V4{16} LOWER(0-LOWERI5;
LENGTH OBSNUM 8.;
OBSNUM=&NOBS;
IF _TYPE_='CORR' and _NAME_='LAG(';
DO I=1TO 16;
Ke=]-1;
IF X==0 THEN DO;
STE0=1/SQRT(OBSNUM);
END;
ELSE DO;
SUM=0;
DOJ=1TOK;
SUM=SUM + (V1{J}**2);
END;
V2{I}=SQRT(1+2*SUM)*(1/SQRT(OBSNUM) );
END;
END;
DO I=1 TO 16;
V3{I}=2*V2{I};
V4{I}=-2*V2{1};

b

DATA PLT;

SET OUT;
ARRAY V1{16} LAG0-LAGI15;
ARRAY V2{16} UPPER0O-UPPERI15;
ARRAY V3{16} LOWER0-LOWERI5;
ARRAY V4{16} STE0-STE1S;
LENGTHX 8.;

KEEP VAR UP LOW X STE;
DO I=1TO 16;

Xm=I-1;

VAR=VI1{l};

UP=V2{1};

LOW=V3({I};

STE=V4{I};

OUTPUT;
END;

PROC PRINT DATA=PLT LABEL;

VAR X VAR STE UP LOW;

LABEL VAR='CORRELATION'
X="LAGGED &VAR"
UP="UPPER LIMIT"
LOW=LOWER LIMIT"

TITLE1 "&TITLE1";
TITLE2 ' PRINT OF DATA USED IN CORRELOGRAM;
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PROC GPLOT DATA=PLT;
PLOT VAR*X='"o' UP*X="U' LOW*X='L"/ VAXIS=-1.0 TO 1.0 BY 0.20 VREF-O 0
OVERLAY;
LABEL VAR='CORRELATION'
X="LAGGED &VAR"
UP="UPPER LIMIT"
LOW=LOWER LIMIT";
TITLE2 'CORRELOGRAM WITH UPPER AND LOWER 95% CONFIDENCE LIMITS";

RUN;
%MEND CORR;

The following statement in parentheses defines the data set, variables, and figure title for the macro. This
program was used to create Figure 3.7 in the text.

%CORR(DATA=FALLS,
VAR=TP,
TIME=DATE,
NOBS=60,
TITLE1=Figure 3.7. FALLS LAKE DATA
);
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Kens.sas

The following graphic interface lines determine the features of the graphic output (screen display or printer

output). The second GOPTIONS statement can be invoked by simply removing the asterisk at the beginning of
the line.

GOPTIONS RESET=ALL DEVICE=EGA GACCESS='SASGASTD>LPT1:' HBY=1
FBY=CENTX ;
*GOPTIONS RESET=ALL DEVICE=HPLJS2 GACCESS='SASGASTD>LPT1;'
HBY=1 FBY=CENTX HSIZE= 5.5 VSIZE =8 NOBORDER
HORIGIN=1.325 VORIGIN=1 NOFILL NOPOLYGONFILL
FTEXT=CENTX HTEXT=1 ;
OPTIONS PAGESIZE=56 MPRINT MISSING=""';

DATA FALLS;
INFILE 'A:FALLS1.DAT' FIRSTOBS=2 end=eof;

INPUT OBS DATE TP TN ; '
\ Identify data set and

variables
NEWDATE= PUT(DATE,MMDDYYS8.);
MONTH=SUBSTR(NEWDATE, 1 »2);
DAY=SUBSTR(NEWDATE 4,2);
YEAR=SUBSTR(NEWDATE,7,2);

output;
if eof then do;

tp=;
month='01';day="01";year="83";output;
month='02";day="01";year='83";output;
month="03';day='01";year='83";output;
month='12";day='01";year="83";output;
month='11";day='01";year='87";output;
mzmhm'12';day=’0l';yeax='87';output;
end;

proc sort data=falls;by year month day;

proc means data=falls noprint;

by year month ; Co
var tp; < Identify variable for
output out=falls mean=tp; analysis

data falls;

set falls;

lengthmo da yr 8.;
mo=month;

da=I1;

yr=year;
date=mdy(mo,da,yr);
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%MACRO KENDALL(DATA,NOBS, VAR, TIME,NSEASONS,TITLE1),
L T L T T T T T e e T T S P
KENDALL TAU - TEST FOR RANDOMNESS AGAINST TREND
- INCLUDES ADJUSTMENT FOR TIED VALUES OF X
- EXECUTES A FORTRAN PROGRAM THAT CALCULATES
KENDALLS TAU: THE PROGRAM CAN CALCULATE

A SIMPLE KENDALL (NSEASONS=1), A SEASONAL
KENDALL (NSEASONS>1), OR A SEASONAL KENDALL
FOR AUTOCORRELATED DATA (NSEASONS>1)

- THE FORTRAN PROGRAM WAS OBTAINED FROM
IR. SLACK, U.S. DEPARTMENT OF THE INTERIOR,

345 MIDDLEFIELD RD.,MS496,MENLO PARK,CA 94025

- THE PROGRAM IS MOST EFFECTIVE IF SAS IS

-XWAIT is not essential;

EXECUTED USING -XWAIT OFF WHEN CALLED FROMDOS: - | it simply eliminates the
OR, -XWAIT OFF CAN BE STORED IN THE heed to hit the "Return”
CONFIG.SAS FILE ‘ key to resume SAS. |,

INPUTS: DATA = SAS DATA SET CONTAINING TEST INFORMATION

NOBS = TOTAL NUMBER OF OBSERVATIONS
(MISSING+NONMISSING)

VAR = SINGLE VARIABLE OF INTEREST AGAINST WHICH THE
TEST WILL BE PERFORMED

TIME = VARTABLE REPRESENTING SEQUENTIAL TIME

NSEASONS = NUMBER OF SEASONS **** NOTE: IF A SIMPLE
KENDALLS TAU STATISTIC IS DESIRED, THEN

SET NSEASONS=1

TITLE1 =FIRST OUTPUT TITLE

DATA ASSUMPTIONS:

- ONE OBSERVATION PER TIME PERIOD

- MUST HAVE EQUAL NUMBER OF DATA VALUES
PER YEAR:LE. MUST HAVE SEQUENTIAL
DATA (E.G. 5 YEARS OF MONTHLY DATA
= 60 OBSERVATIONS)

- MISSING OBSERVATIONS ARE ALLOWED

- NO MORE THAN 1040 OBSERVATIONS ALLOWED

- NOBS/NSEASONS MUST BE A WHOLE NUMBER.

240 e 3 o b ade e o e e e ok ok e ke e ok * teak ko

PROC SORT DATA=&DATA;BY &TIME;

DATA ONE;

SET &DATA;

FILE 'TEMP.DAT;

LENGTHTI T28.;

ZERO=0;

IF &VAR= THEN &VAR=-99999.;
T1=&NOBS;

T2=&NSEASONS;

IF _N_=1 THEN DQO;

PUT @1 ZERO 1. T1 2-6 T2 7-9;
END;

PUT @ 1 &VAR 10.3;




RUN;

The next line calls the Fortran program (Kendall4). If Kéndall4 is not on the SAS dircai;ory (e.g.itison
c:\trend), then you must change this line to reflect the correct location (e.g., X ’C:\TREND\KENDALL4';).

X'KENDALLA4Y,
RUN;

DATA TAUIN;
INFILE 'OUT.DAT;
INPUT TAU PWITHOUT PWITH SLOPE

PROC PRINT DATA=TAUIN LABEL

VAR TAU PWITHOUT PWITH SLOPE;

LABEL TAU='TAU STATISTIC'
PWITHOUT="P-VALUE WITHOUT SERIAL CORRELATION'
PWITH= 'P-VALUE WITH SERIAL CORRELATION'
SLOPE~'SLOPE STATISTIC';

TITLE1 "&TITLE1";
TITLE2 'KENDALL TAU}
RUN;

%MEND;

The following statement in parentheses defines the data set, variables, and figure title for the macro.

%KENDALL(DATA=falls,
NOBS=60,
VAR=tp,
TIME=DATE,
NSEASONS=1,
TITLE1=TEST DATA

)%
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Adjust.sas

The following graphic interface lines determine the features of the graphic output (screen display or printer
output). The second GOPTIONS statement can be invoked by simply removing the asterisk at the beginning of
" the line.

LIBNAME C'C:\;
GOPTIONS RESET=ALL DEVICE=EGA ROTATE GACCESS='SASGASTD>LPT1:' HBY=1
FBY=CENTX ; L _

*GOPTIONS RESET=ALL DEVICE=HPLJS2 ROTATE GACCESS='SASGASTD>LPT1:'
HBY=1 FBY=CENTX HSIZE= 5.5 VSIZE =8 NOBORDER
HORIGIN=1.325 VORIGIN=1 NOFILL NOPOLYGONFILL
FTEXT=CENTX HTEXT=1 ; , .

OPTIONS PAGESIZE=56 MPRINT MISSING='';

DATA FALLS;
"INFILE A:FALLS1.DAT' FIRSTOBS=2 end=eof:

INPUT OBS DATE TP TN ; '
v \ Identify data set and

variables
NEWDATE= PUT(DATE,MMDDYY8.);
MONTH=SUBSTR(NEWDATE,1,2);
DAY=SUBSTR(NEWDATE,4,2);
YEAR=SUBSTR(NEWDAT’E,7 »2);

output,

if eof then do;
tp=;
month='01';day="01";year='83";output;
month='02";day="01";year='83";output;
month="'03"';day="01";year="83";output;
month="12";day="01";year='83";output;
month='11";day="01";year='87";output;
month="'12";day="01";year="87";output;
end;

proc sort data=falls;by year month day;

proc means data=falls noprint;

by year month ;

var tp; <«— Identify variable for
output out=falls mean=tp; analysis

data falls;

set falls;

length mo da yr 8.;
mo=month;

da=1;

yr=year;
date=mdy(mo,da,yr);
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%MACRO ADJUST(DATA,VAR,TIME,SEASON,NSEASONS,NOBS,TITLE1);
ARk ook g ook
ADJUST - PROGRAM TO DETREND AND DESEASONALIZE THE RAW DATA
- THE SLOPE ESTIMATE NEEDED
FOR DETRENDING IS OBTAINED FROM THE OUTPUT
OF THE KENS MACRO
- THE OUTPUT DATA SET IS CALLED: ADJUST,
THE NEW VARIABLE IS CALLED: ADJUSTED
- THE ADJUST DATA SET MAY BE ENTERED INTO THE KEN MACRO

INPUTS: DATA = SAS DATA SET CONTAINING RAW DATA
VAR =SINGLE VARIABLE OF INTEREST FOR WHICH THE
DIAGNOSTICS WILL BE PERFORMED
TIME = SAS VARIABLE REPRESENTING SEQUENTIAL TIME
SEASON = NAME OF THE SAS VARIABLE REPRESENTING
THE SEAONAL TIME COMPONENT (E.G., MONTH)
NSEASON = THE NUMBER OF SEASONS PER YEAR
NOBS = TOTAL NUMBER OF OBSERVATIONS
(MISSING + NONMISSING)
TITLE1 = FIRST OUTPUT TITLE

DATA ASSUMPTIONS:
- ONE OBSERVATION PER TIME PERIOD
- MISSING OBSERVATIONS ARE ALLOWED

*kk kkkk Kk

PROC SORT DATA=&DATA:
BY &SEASON;

PROC UNIVARIATE DATA=&DATA NOPRINT;
VAR &VAR;

BY &SEASON;

OUTPUT OUT=0UT1 MEDIAN=S_MEDIAN;

kg kkk * kkk

**+* ADJUST THE DATA BY SUBTRACTING THE MEDIAN SEASONAL VALUE

kR kkkRkkRRkkkrkE *%

>

DATA ADJUST;

MERGE &DATA OUTI;

BY &SEASON;
ADJUSTED=&VAR-S_MEDIAN;
YEAR=YEAR(&TIME);

kkkkkkgk *% *kk * *

*++* ADJUST THE DATA BY SUBTRACTING THE TREND LINE

* *kxk kxkkk *kkk wxk.

PROC SORT DATA=ADJUST;
BY &TIME;

DATA TEMP;
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SET ADJUST;
FILE 'TEMP.DAT";

LENGTHTI T2 8;

ZERO=0;

IF ADJUSTED=. THEN ADIUSTED=99999
T1=&NOBS;

T2=&NSEASONS;

IF _N_=1 THEN DO;

PUT @1 ZERO 1. T1 2-6 T2 7-9;

END;

PUT @ 1 ADJUSTED 10.3;

run;

The next line calls the Fortran progra‘m (Kendall3). If Kendall3 is not“'c;n the SAS directory (e.g., it is on
c:\trend), then you must change this line to reflect the correct location (e.g., X 'CATREND\KENDALL3Y).

X'A:KENDALL3";
T rum;

DATA TAUIN;
INFILE 'OUT.DAT"
INPUT TAU PWITHOUT PWITH SLOPE ;

DATA ADJUST;
SET ADJUST;
IF _N_=1 THEN SET TAUIN;

PROC SORT DATA=ADJUST;
BY YEAR;

DATA C.ADJUST;

SET ADJUST;

BY YEAR;

RETAIN YRCNT 0 NEWTIME;

LENGTH SEANUM 8.;
SEANUM=&NSEASONS;

IF FIRST.YEAR THEN DQO;
YRCNT=YRCNT+1;

NEWTIME=YRCNT;
ADJU STED—ADJUSTED-(SLOPE"‘NEWTIME),
OUTPUT;

END;

ELSE DO;
NEWTIME=NEWTIME+(1/SEANUM);
ADJUSTED=ADJUSTED-(SLOPE*NEWTIME);
OUTPUT;

END;

PROC SORT DATA=C.ADJUST;BY &TIME;
PROC PRINT DATA=C.ADJUST;

VAR &TIME ADJUSTED SLOPE S_MEDIAN;
FORMAT &TIME MMDDYYS.;
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TITLE1 "&TITLEI";;
TITLE2 "PRINT OF ADJUSTED DATA';

PROC PLOT DATA=C.ADJUST;
PLOT ADJUSTED*&TIME;

FORMAT &TIME MMDDYYS,;
TITLE2 'PLOT OF ADJUSTED DATA’;

RUN;
%MEND ADJUST;

The following statement in parentheses defines the data set, variables, and figure title for the macro.

%ADJUST(DATA=FALLS,
VAR=TP,
TIME=DATE,
SEASON=MONTH,
NSEASONS=12,
NOBS=60,
TITLE1=FALLS TEST DATA

);
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Corradj.sas

The following graphic interface lines determine the features of the graphic output (screen display or printer
output). The second GOPTIONS statement can be invoked by simply removing the asterisk at the beginning of
the line. '

LIBNAME C'C:\}
GOPTIONS RESET=ALL DEVICE=EGA ROTATE GACCESS="SASGASTD>LPTI:' HBY=I
FBY=CENTX;

*GOPTIONS RESET=ALL DEVICE=HPLJS2 ROTATE GACCESS="SASGASTD>LPTI:'
HBY=1 FBY=CENTX HSIZE= 5.5 VSIZE =8 NOBORDER
HORIGIN=1.325 VORIGIN=1 NOFILL NOPOLYGONFILL
FTEXT=CENTX HTEXT=1 ;

OPTIONS PAGESIZE=56 LINESIZE=80 MPRINT MISSING='";

DATA FALLS;
INFILE 'A:FALLS1.DAT' FIRSTOBS=2 end=eof;

INPUT OBS DATE TP TN ; ~
| \ Identify data set and

variables
NEWDATE= PUT(DATE,MMDDYY8.);
MONTH=SUBSTR(NEWDATE,1 »2);
DAY=SUBSTR(NEWDATE 4,2);
YEAR=SUBSTR('NEWDATE,7,2);

output;

if eof then do;

tp=;
month='01';day='01';year='83";output;
month='02';day="01';year='83";output;
month='03';day="'01';year='83";output;
month="'12";day="01";year='83";output;
month="11';day="01";year="87";output;
month="'12";day="'01";year='87";output;
end;

proc sort data=falls;by year month day;

proc means data=falls noprint;
by year month ;

var tp; <« ldentify variable for
output out=falls mean=tp; analysis

data falls;

set falls;
lengthmodayr8.;
mo=month;

da=1;

yr=year,
date=mdy(mo,da,yr);
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RUN;

%MACRO CORR(DATA,VAR,TIME,NOBS,TITLE1),

ok ko ok ok ook ok ok ok Rk kERkE *kkk

CORRELOGRAM: PLOT AND PRINT

INPUTS: DATA = SAS DATA SET CONTAINING TEST INFORMATION
VAR = SINGLE VARIABLE OF INTEREST FOR WHICH THE o
DIAGNOSTICS WILL BE PERFORMED
TIME = SAS VARIABLE REPRESENTING SEQUENTIAL TIME
NOBS = NUMBER OF OBSERVATIONS “
MISSING + NONMISSING)
TITLE1 = FIRST OUTPUT TITLE

DATA ASSUMPTIONS:
- ONE OBSERVATION PER TIME PERIOD
- MISSING OBSERVATIONS ARE ALLOWED:

koo kbl R koo ook ko ko ko ko ok ok ok ok ok kg kkk

*++ PLOT DATA, AND OUTPUT STATISTICS b

PRI 4 2L 232222 2222222 222222222222 21t kkk

PROC SORT DATA=&DATA;BY &TIME;

DATA CORR;

SET &DATA;
LAG0=&VAR;
LAG1=LAG1(&VAR);
LAG2=LAG2(&VAR);
LAG3=LAG3(&VAR);
LAG4=LAG4(&VAR);
LAGS=LAGS(&VAR);
LAG6=LAG6(&VAR);
LAG7=LAG7(&VAR);
LAG8=LAGS(&VAR);
LAGI=LAGI(&VAR);
LAG10=LAG10(&VAR);
LAG11=LAG11(&VAR);
LAG12=LAGI12(&VAR);
LAG13=LAG13(&VAR);
LAG14=LAG14(&VAR);
LAG15=LAG15(&VAR);

PROC CORR DATA=CORR noprint out=out ;
VAR LAG0 LAG1 LAG2 LAG3 LAG4 LAG5 LAG6 LAG7 LAG8 LAG9 LAG10
LAGI11 LAG12 LAG13 LAG14 LAGIS5;

DATA OUT;

SET OUT;

KEEP LAG0-LAG15 STE0-STE15 UPPERO-UPPER15 LOWER(-LOWERI1S;
ARRAY V1{16} LAG0-LAGI5;

ARRAY V2{16} STE0-STEILS;

D-28




ARRAY V3{16} UPPER0-UPPERI15;
ARRAY V4{16} LOWER(0-LOWERI15;
LENGTH OBSNUM 8.;
OBSNUM=&NOBS;
IF _TYPE_='CORR' and _NAME_=LAG(";
DO I=1TO 16;
K=I-1;
IF K=0 THEN DO;
STE0=1/SQRT(OBSNUM);
END;
ELSE DO;
SUM=0;
DOJ=1TOK;
SUM=SUM + (V1{J}**2);
END;
V2{I}=SQRT(1+2*SUM)*(1/SQRT(OBSNUM) );
END;
END;
DO I=1TO 16;
V3{I}=2*V2{1};
VA4{I}=-2*V2{1};
END;

DATAPLT;

SET OUT;

ARRAY V1{16} LAG0-LAGIS5;
ARRAY V2{16} UPPER0-UPPER15;
ARRAY V3{16} LOWERO-LOWERI1S5;
ARRAY V4{16} STE0-STE15;
LENGTHX 8.;

KEEP VAR UP LOW X STE;

DO I=1 TO 16;

X=1-1;

VAR=VI1{I};

UP=V2{1};

LOW=V3{1};

STE=V4{1};

OUTPUT;

END;

PROC PRINT DATA=PLT LABEL;

VAR X VAR STE UP LOW;

LABEL VAR="CORRELATION'
X="LAGGED &VAR"
UP="UPPER LIMIT'
LOW=LOWER LIMIT’

TITLE1 "&TITLEL";
TITLE2 ' PRINT OF DATA USED IN CORRELOGRAM;

PROC PLOT DATA=PLT;
PLOT VAR*X="*' UP*X="U' LOW*X="L"/ VAXIS=1.0 TO 1.0 BY 0.20 VREF=0.0
OVERLAY;
LABEL VAR="CORRELATION'




X="LAGGED &VAR"
UP="UPPER LIMIT'
LOW='LOWER LIMIT';
TITLE2 'CORRELOGRAM WITH UPPER AND LOWER 95% CONFIDENCE LIWTS';

RUN;
%MEND CORR;

The following statement in parentheses defines the data set, variables, and figure fitlo for the macro. This
program was used to create Figure 3.15 in the text.

%CORR(DATA=C.ADJUST,
VAR=ADIJUSTED,
TIME=DATE,

NOBS=60,
TITLE1=FALLS TEST DATA

%
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