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PREFACE 

This manual and the accompanying software in the SAS system present 
nonparametric statistical methods for trend assessment in water quality, with an 
emphasis on lakes. The purpose of the manual and software is to furnish lake 
program managers with guidance on the application and interpretation of 
methods for the detection of trends in lake water quality. 

To provide a foundation, the manual begins with identification of basic concepts 
and approaches in applied statistics that are important in trend detection. This is 
followed by a discussion of hypotheses testing and common assumptions for 
parametric tests and nonparametric tests for water quality trend detection in 
lakes. The procedures and tests are presented in detailed examples for both 
single-lake and regional analyses. 

The guidance manual concludes with a list of pertinent references, software, and 
appendices which provide a description of the trend detection software and 
additional background on descriptive statistics. 

This manual is intended to be a living document that will be updated and 
improved as technology and circumstances change. As such, we request that 
you send all suggestions to the Clean Lakes Program, U.S. Environmental 
Protection Agency, 401 M Street, S.W., Washington, D.C. 20460. 
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Chapter 1 

Introduction 

Water quality varies in time and space as a function of many macroscopic 
and microscopic processes. On a large scale, changes in land use and pollutant 
discharge over time can cause permanent changes or trends in water quality in 
receiving waterbodies. On a yearly basis, seasonal changes in solar: radiation, 
temperature, and precipitation can cause cyclical patterns in water quality that 
repeat each year. On a microscopic scale, many minor factors can influence water 
quality. For example, a variety of factors (e.g., wind, temperature, and shoreline 
irregularities) may collectively cause turbulent or molecular diffusion in water bodies 
that results in ah apparent random behavior in water quality in time and space. 

Detection of a trend in water quality over time is dependent on: (1) the . 
acquisition of water quality data from a prop13rly-d~$ig·ned monitoring program, (2) 
the application of appro"priate statistical method~ Qftrend detection, and (3) a good 
understanding of relf:want water quality relationships. Both parametric and 
nonparametric (disiribution~free) statistical methods·h~ve.been proposed and . ' 
applied for water quality trend detection purposes. With eith~r type of procedur~. the 
modeler seeks to sepa~ate a signal (the trend) from the noise (the "unexplained" 
component) in the water quality data. 

The assessment of possible trends in lake water quality can be an important 
scientific task in support of lake water quality management. The presence or 
absence of trends over time in key water quality variables is a good indication of the 
degree to which water quality is responding to changes (land use and pollutant 
discharge) in the watershed. This information, in turn, provides a basis for predictive 
models of the pollutant loading - lake response relationship; these models can then 
be used to forecast future lake response to future watershed changes. 

Formal statistical trend analysis also provides a rational, scientific basis for 
addressing concerns that may arise due to natural variations in water quality. For 
example, citizens who participate in water quality recreation may be distressed 
about undesirable "changes" in lake water quality that may be due entirely to natural 
variations. An ongoing water quality trend detection program could provide 
estimates of the likelihood that the observed "changes" reflect natural variability or 
real trends over time. This helps in citizen education, and in turn, may suggest 
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alternative management actions that may be directed at either reversing trends in 
water quality or reducing in-lake variability. 

To help motivate the need for the application of the statistical methods 
presented in this manual, a hypothetical water quality data set is created and 
analyzed. To do this, first consider what factors cause measured water quality to 
vary or change over time. A reasonably comprehensive list of these factors is: 

·trends 
·seasonal cycles 
·daily cycles 
·variations in hydrology (e.g., streamflow, lake lev,el) 
·natural (unexplained) variability 
·measurement error 

In brief, "trends" refers to permanent changes in the leve!l (e.g., mean value) of a 
water quality variable, "seasonal cycles" and "daily cycles" refer to oscillating 
patterns caused primarily by periodic changes in solar r~tdiation, "variations in 
hydrology" refers to (for example) the often observed inverse relationship between 
volume of streamflow and concentration of a water quality variable, "natural 
variability" includes all factors (e.g., microscopic processes) not explicitly identified, 
and "measurement error" refers to the fact that there is always some error in the 
field and laboratory methods of analysis. 

Using these definitions, a ten-year data series for monthly measurements of 
total phosphorus concentration in a lake is created. At the onset of sampling, the 
mean concentration is 20ug/1. A 20% linearly increasing trend is Imposed over the 
ten year period, so that the mean concentration after ten years is 24ug/l. In addition, 
a seasonal cycle (with annual frequency) of amplitude 10ugll is included as a sine 
wave. Finally, natural variability and measurement error are incorporated as a 
"noise" term at three different levels characterized by standard deviation of 1, 3, and 
5 ug/1, respectively. 

The trend and seasonal cycle are shown in FigurE~ 1.1. Notice that the trend 
is visible on the graph even when combined with the sim:! wave. Thus, when the 
graphical evidence is as clear as presented in Figure 1. ~, there may be little need 
for rigorous statistical analysis to confirm the existence of a trend (although the 
statistical analysis may still be useful to provide the best estimate of the magnitude 
of the trend). 

Figure 1.2 presents a series of three graphs that ~~ombine the linear trend 
with the noise term (natural variability and measurement error) at successively 
higher levels of noise (characterized by the noise standard deviation). When the 
noise standard deviation is only 1.0 (top graph), the trend is still visible. However, as 
the standard deviation of the noise increases, the linear trend becomes visually 
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· obscured by the natural variability and measurement error. In these cases, good 
statistical methods are needed to separate the signal (trend) from the noise. 

In Figure 1.3, the seasonal cycle is added to the noise and trend. When the 
noise term is small (top graph), each separate component (particularly the sine 
wave) is visible. However, as the noise increases (bottom two graphs), the separate 
components become less evident visually. A combination of good limnological · 
j._.dgment (to assess the seasonal cycle) and statistical methods is necessary to 
successfully interpret a water quality time series like that in the bottom graph of 
Figure 1.3. The methods presented below are appropriate for this task. 

The purpose of this manual is to furnish lake program managers with 
guidance on the application and interpretation of methods of trend detection in lake 
water quality. To provide a foundation, the manual begins with identification of basic 
concepts and approaches in applied statistics that are important in trend detection. 
This is followed by a discussion of hypothesis testing and common assumptions for 
parametric tests and non parametric tests for water quality trend detection in lakes. 
These procedures and tests are presented for both single-lake and regional 
analyses. The guidance manual concludes with a list of pertinent references, 
software, and an appendix which provides a description of the trend detection 
software and additional background on descriptive statistics. 
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Chapter 2 

Basic Statistics and Statistical Concepts 

2. 1. Descriptive Statistics 

When a set of data is quite small, one may choose to use all of the data in an 
analysis or to present the entire data set in a report. For large data sets, the 
scientist recognizes that to most effectively transfer information he must summarize 
the data set with a few well-chosen statistics. A choice is made to trade some of the 
information contained in the entire data set for the convenience of a few descriptive 
statistics. This choice is usually a good one, provided the descriptive statistics that 
are selected correctly represent the original data. 

Some descriptive statistics are so commonly used that we forget that they 
actually represent only one option among many candidate statistics. For example, 
the mean and the standard deviation (or variance) are statistics used to estimate the 
center of a data set and the spread on those data. When these statistics are to be 
used, the scientist should decide beforehand that they are the best choices to 
describe the aforementioned characteristics of the data set. Often they are (notably 
for symmetrically-distributed data following an approximate normal distribution), so 
their use is frequently justified. However, it is noted below and in Appendix A that 
there are many situations with lake water quality data where alternative descriptive 
statistics are preferred. These alternatives are robust/resistant statistics. 

In the selection of descriptive statistics, it is important that the scientist have a 
clear understanding of the purpose that the statistic serves. In many limnological 
studies descriptive statistics are selected because the convenience of a few 
summary numbers outweighs the loss on information that results when the entire 
data set is described by the statistics. It is therefore essential that as much 
information as possible be summarized in the descriptive statistics because the 
alternative may be a misrepresentation of the original data. 

Certain specific features of the data set are characterized using d~scriptive 
statistics. For example, the center, or central tendency of a set of data,. is probably 
the most important measure. Among the candidate statistics for central tendency 
are the mean, median, mode, and geometric mean. Once the center of a data set is 
described, the next important feature for the data distribution is the spread, 
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dispersion, or scale. Among the candidate estimators of this feature of a data set 
are the range, standard deviation, and interquartile rangE~. These two characteristics 
of a data set, central tendency and dispersion, are the most common descriptive 
statistics. Other characteristics, such as skewness and kurtosis, are occasionally 
important as well. At this point, if specific information and examples on descriptive 
statistics is desired, the reader should turn to Appendix A. 

2.2. Robustness, Resistance, and Influence 

In the statistics literature, robustness refers to instansitivity to assumption 
violations, resistance refers to insensitivity to outliers, and influence concerns the 
effect of observations on summary measures (statistics) of the data. In parametric 
statistical analysis, we make an assumption concerning :an underlying population 
model (often normal). We hope that estimators {e.g., sample mean and variance) 
selected to summarize the data are robust if the probabi!lity model is incorrect, are 
resistant to influential data points or outliers, yet are effic:ient {low standard error) 
under any situation. If outliers and lack of resistance are concerns, we may choose 
a distribution-free method or nonparametric test for analysis. In the future, robust 
statistical methods may be the best choice for analysis c1f water quality data. At 
present, we tend to recommend nonparametric methods and tests unless there is 
little doubt that a parametric model is correct. 

2.3. Hypothesis Testing 

2.3.1. Introduction 

In conventional statistical analysis, hypothesis testing for a trend is usually 
based on a point null hypothesis. Typically, the point null hypothesis is that there is 
no trend; it is often stated in this way as a "straw man" {Wonnacott and Wonnacott 
1977) that the scientist expects to reject on the basis of the data evidence. To test 
this hypothesis, data are obtained to provide a sample estimate of the effect (e.g., 
change in surface pH in Adirondack lakes), the data are used to provide a sample 
estimate of a test statistic, and a table for the test statist~c is consulted to estimate 
how unusual the observed value of the test statistic is if the null hypothesis is true. If 
the observed value of the test statistic is unusual, the nUl II hypothesis is rejected. 

In a typical application of parametric hypothesis testing, an hypothesis, H0 , 

called the null hypothesis, is proposed and then evaluattad using a standard 
statistical procedure like the t-test. Competing with this null hypothesis for 
acceptance is the alternative hypothesis, H1• Under this simple scheme, there are 
four possible outcomes of the testing procedure associated with the truth {true or 
false) and the test results (accept or reject) for each hypothesis; see Table 2.1. 
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Table 2.1 Possible Outcomes From Hypothesis Testing 
... ¥''' ' ... ·- . - . ... ... ·~ . . " _,, 

State of D~cision 
the World Accegt ~- Reject . .!:Ia 
H0 is True Correct decision. Type I error. 

Probability = 1 - a; Probability = a; 
corresponds to the also called the 
confidence level. significance level. 

H0 is False (H1 is True) Type II error. Correct decision. 
Probability = fl Probability = 1 - 13; 

also called power. 

The point null hypothesis is a precise hypothesis that may be symbolically 
expressed as: 

Ho: 9=9o 

where e is a parameter of interest. An example of a point null hypothesis is, in 
words, "there·is no change in mean surface water total phosphorus concentration 
after imposition of a phosphate detergent ban." Symbolically, this may be expressed 
as: 

where J,J 1 is the pre-ban true mean and J,J 2 is the post-ban true mean. The test of this 
null hypothesis proceeds with the calc.ulation of the sample means, x1 and ~· In 
most cases, the sample means will differ as a conseque"nce of natural variability 
and/or measurement error, so a decision must be made·concerning how large this 
difference must be before it is considered too large to be due to variability and/or 
error alone. In classical statistics, this decision ·is often based on standard practice 
(e.g., accept a type I error of 0.05), or on informal consideration of the 
consequences on an incorrect conclusion. 

2.3.2. Common Assumptions for Statisti~al Hypothesis Tests 

Virtually all statistical procedures and tests require that one or more assumptions 
hold. These assumptions concern either the underlying population being sampled or 
the distribution for a test statistic. Since lack of compliance with an assumption can 
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have a substantial effect on a statistical test, the common assumptions of normality, 
equality of variances, and independence are discussed in this section. Among the 
topics presented are the extent to which an assumption may be violated without 
serious consequences, and approaches that might be recommended to address 
possible assumption violations. 

Normality 

One of the common assumptions of many parametric statistical tests is that 
samples are drawn from a normal distribution. Alternatively, a normal population 
may not be required, but instead the statistic of interest (E!.g., a mean) is assumed to 
be described by a normal sampling distribution (i.e., the mean is normally 
distributed). In either case, the key distinction between parametric and 
nonparametric (or distribution-free) statistical tests is that a probability model (often 
normal) is assumed. 

Empirical evidence (e.g., Box et aL 1978) indicates that the significance level 
but not the power is robust (i.e., not greatly affected) to mild violations of a normality 
assumption for statistical tests concerned with the mean; this should also apply to 
tests concerned with trend detection. This suggests that a test result indicating 
"statistical significance" is reliable, but a "nonsignificant" result may be due to lack of 
robustness to non-normality. Normality of a sample can be checked using normal 
probability plots, chi square tests, or Kolmogorov-Smirnov tests; unfortunately, many 
water quality studies often are not designed to produce enough samples to make 
these tests definitive. 

Normality of the sampling distribution for a test statistic is important because 
it provides a probability model for interval estimation and hypothesis tests that 
makes use of the test statistic. In many cases, distributional properties of the test 
statistic could be assessed using Monte Carlo simulation. Alternatively, given the 
limited robustness to non-normality and the uncertainty in the sampling distributions 
of selected water quality statistics (e.g., what is the true underlying distribution for a 
test statistic for model errors?}, it may be wise to routinely transform to achieve 
approximate normality (or symmetry) in a sample, if normality is required. Since 
non-negative concentration data cannot truly be normal, and since there is empirical 
evidence to suggest that environmental contaminant data often may be described 
with a lognormal distribution, the logarithmic transformation is a good first choice. 
Thus, in the absence of contrary evidence, it is generally recommended that water 
quality data be log-transformed prior to analysis. This recommendation is often 
compatible with the conventional approach to model dete1rministic patterns of 
variability in the time series data (e.g., a streamflow effec:t); this is illustrated in 
Chapter 3. 
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Equality .of Variance 

A second common assumption is that, when two or more distributio'ns are · 
involved in a test (i.e., to assess the difference in concentration at two sites), the 
variances are to be. constant across distributions. Many tests are also robust to mild 
violations of this assumption. Since it is quite unlikely that there will be a need to 
compare trends in lake water quality variables with widely different variances, this 
assumption is not addressed further. The interested reader may consult Snedecor 
and Cochran (1967) for discussion and examples. 

Independence 

The assumption that is likely to be of greatest concern is that of independence. 
Most statistical tests (parametric and nonparametric) require a random sam pie, or a 
sample composed of independent observations. Dependency between or among 
observations in a data set means that each observation contains some of the same 
information already conveyed in other observations; Thus, there is less new, 
independent information in a dependent data set than in an independent data set of 
the same sample size. Unfortunately, statistical procedures are often not robust to 
violation of the independence asSumption, so adjustments are generally · 
recommended to address anticipated problems. 

Dependence in a sample can result from trend, cyclical patterns, and 
autocorrelation in the disturbances. One way to mathematically describe a water 
quality time series is: · 

. y; = (31 (time) +f32(sin{21t(time)}) + e 

In this expression, we have a linear time trend, a simple seasonal sinusoid, and a 
disturbance term (e) that characterizes allremaining·unexplained variation in the 
water quality data. In most types of analyses, the assumption of independence 
refers to independence in the disturbances; this is the case for .. tinie trend 
hypothesis testing. Thus, autocorrelation or dependence in the data series for the 
water quality variable (yJ may exist, but may be due to a deterministic feature of the 
data (e.g., a time trend or seasonal pattern). This type of autocorrelation poses no 
difficulty and is addressed by modeling the deterministic feature of the data ·and 
subtracting the modeled component from the original series. Of particular concern in 
testing for trend is autocorrelation that remains (i.e., is in the disturbances) after all 
deterministic features are removed. When this situation arises, an adjustment' to the 
trend test is necessary; this issue is discussed below. 

In the common situation of positive autocorrelation in the disturbances (i.e., each 
disturbance is positively correlated with nearby disturbances in the series, perhaps 
due to persistence in behavior over time), confidence interval estimates will be too 
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narrow.and are thus more apt to lead to rejection of the null hypothesis. For 
simplicity, the common assumption of a lag-one autoregrE~ssive structure is often 
adopted {i.e., each disturbance is correlated with only the immediately preceding 
disturbance in the series). This assumption is probably reasonable in many 
situations and might be difficult to reject with the typical short water quality data 
series of 25-50 observations. 

Autocorrelation in the disturbances is the most common and potentially 
troublesome of the causes of assumption violations. The degree of autocorrelation 
Is a function of the frequency of sampling; this means thalt a data set based on an 
irregular sampling frequency cannot be characterized by a single, fixed value for 
autocorrelation. For water quality time series, stream data obtained more frequently 
than monthly may be expected to be autocorrelated (after trends and seasonal 
cycles are removed). Stream water quality data based on less frequent sampling 
are less likely to exhibit sample autocorrelation estimates of significance. 

Autocorrelation in lake water quality data (in the absence of trend and 
seasonal cycle) may be found at even longer frequencies than in streams and may 
be expected in data collected on a sampling schedule that is shorter than the 
hydraulic detention time. This occurs because a lake gent3rally does not act as a 
"flow-through" system; in-lake mixing may often result in a persistence in behavior 
over many cycles of the water residence time. 

2.4. Statistical Methods for Trend Detection 

2.4.1. Summarizing Trend Data 

Common statistical estimators are discussed abov~e and in the Appendix; the 
reader should refer to these sections for explanation of terms. In trend analyses, we 
may have no observations, one observation, or perhaps a few observations per time 
interval. If data are missing, there are fill-in methods that may be used for: (1) 
simple interpolation, (2) estimation based on an assumed probability model (see 
Gilliam and Helsel, 1986), or (3) estimation based on an assumed autoregressive, 
moving average model. However, since: (1) interpolation adds no new information, 
and (2) the two estimation methods require an assumption concerning the . 
underlying parametric model, no special adjustments for missing values are 
recommended. In effect, relatively few missing values aret irrelevant, while a high 
percentage of missing values is apt to mean that there is too little information for 
any conclusions in trend testing. 

If there is more than one observation per time period, then a summary 
statistic is needed. The likely options are: (1) select the d;:~ta point closest to the 
center of the time interval, or (2) select the median, trimmed mean, or mean of the 

12 



observations. Selection of the single data point closest to the center of the time 
period is the simplest option, but it has the disadvantage of losing the information 
from the observations not used. If the number of observations per time period is 
essentially the same within each time period, then it is recommended that a median 
or trimmed mean be used1

. ·However, if the number varies substantially among time 
periods, then heteroscedasticity (non-constant variance) may be a problem since 
the location statistics for the time periods will be based on different sample sizes. 
Van Belle and Hughes (1984) note that the resultant heteroscedasticity does not 
affect the distribution of the trend test statistic under the null hypothesis, but the 
effect on test power is uncertain. Thus, a safe approach is to use the median or 
trimmed mean if the number of data points per time period does not differ greatly, 
and to use the data point closest to the center if sample sizes differ substantially. 
Finally, if the number of data points per time period is nt which is always greater 
than one, then summarize each time period with the median (or trimmed mean) of 
the nt data points closest to the center of the period. 

2.4.2. Graphical Methods 

Once the time series data have been prepared for analysis, they should be 
examined graphically using some or all of the methods described in the appendix. A 
bivariate plot of concentration versus time gives a visual perspective of trend. Since 
water quality concentration data are often skewed-right, and large outliers are more 
troublesome than are small outliers, it may be wise to log-transform the 
concentration data before plotting. In addition, the smoothing spline in SASGRAPH 
may help the eye see patterns in the data. 

Bivariate scatter plots are also useful for examination of deterministic 
patterns other than those associated with time (e.g., temporal trends and 
seasonality). For example, there may be a deterministic relationship between water 
inflow and concentration in river-run lakes, or perhaps dam operating policy in an 
impoundment has a systematic effect on water quality. Identification ofthe effect of 
these forcing. functions may be enhanced with graphics. · 

One particularly helpful graph is the box and whisker plot. For example, a 
time trend may be examined with a set of annual box and whisker plots: one box for 
each year, with concentration on the vertical axis and year on the horizontal axis. 
This graph displays the time sequence of annual medians, quartiles, and extremes, 
which is a more thorough expression of trend than is a simple graph of median 
versus time alone. Box plots may also be used to visually capture seasonal 
patterns: one box for each season, with concentration on the vertical axis and 
season on the horizontal axis. As with annual box plots, the sequence of seasonal 

The median may be preferred because it is invariant under transformation (or nearly 
invariant when there is an even number of observations); e.g., the ordering, and hence the 
middle value, do not change under a log-transform. 
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medians, quartiles, and extremes may be extremely helpful in diagnosing seasonal 
patterns. 

2.4.3. Parametric Methods and Tests 

Parametric approaches in trend detection involve. a model for the trend and a 
probability model for the errors. The model for the trend is typically a linear, 
curvilinear, or step function, while the model for the errors is typically a normal 
probability distribution with independent, identically-distributed errors. If the trend is 
believed to be continuous (linear or curvilinear), ordinary least squares regression 
may be applied to fit a continuous trend model, and the te:st of trend would be based 
on the statistical significance of the regression parameters. If the trend is believed to 
be abrupt (step function), at-statistic may be used to evaluate a step trend 
(Lettenmaier 1976; Montgomery and Loftis 1987). If seasonal patterns and 
autocorrelation are present in a time series data set (in addition to a possible trend), 
then autoregressive, integrated, moving average models (ARIMA, or Box-Jenkins, 
models) may be the appropriate parametric modeling choice {Pankratz 1983). 

The parametric approach is appropriate if the trencl model is a reasonable 
characterization of reality and if the model for the errors holds. The advantage to the 
parametric approach is that, if the models hold, the statistical tests for trend should 
be more powerful that distribution-free alternatives. Thus, the assumption that trend 
and probability models are correct is the basis on which the superior performance of 
parametric methods rest. If the assumptions concerning these models are incorrect, 
then the results of the parametric tests may be invalid and distribution-free 
procedures may be more appropriate. 

Given the features of water quality data identified in the previous section, 
parametric trend modeling often begins with seasonal adjustment' or a model 
(perhaps sinusoidal) for the seasonal pattern. In addition, other deterministic 
features of the data, such as a predictable relationship between concentration and 
streamflow, should be modeled. These (and any other) dE~terministic causes of 
water quality variability need to be explicitly modeled. In doing so, the non-trend 
variability in the data can then be removed, or subtracted, from the raw data, which 
reduces the background variability. This means that the "noise" component is 
smaller, so that a "signal" (trend) can be more easily detected. 

2.4.4. Distribution-Free Methods and Tests 

If there is uncertainty concerning the applicability of the trend model or the 
model for the errors, or if it is known that one or both of these models does not hold, 
then distribution-free (or nonparametric) methods should lt>e considered. 
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Distribution-free methods, as the name suggests, do not require an assumption 
concerning the underlying probability model for the data generation process. 
However, an assumption of independence is usually made; thus, autocorrelation 
can be a serious problem, just as it is a problem for parametric methods and robust 
methods. 

Kendall's Tau or the seasonal Kendall's Tau test (Hirsch et al. 1982, Hirsch 
and Slack 1984, Gilbert 1987) are often good choices for distribution-free tests. The 
Kendall's Tau test is used to determine if a time series is moving upward, 
downward, or remaining relatively level over time. This is accomplished by 
computing a statistic, based on all possible data pairs, that represents the net 
direction of movement of the series. To do this, the data are first ordered according 
to time: x1 , Xz, >s ..... x. ..... ~. where t goes from 1 ton. All possible pairs of differences 
x1- x1 are calculated, where i>j (observation j precedes observation i in time): This 
difference. will either be positive (x~x1}, negative (Xr<Xj). or zero (Xr=Xj) for each of the 
pairs. The number of positive differences minus the number of negative differences 
is calculated; this becomes the test statistic (the Mann-Kendall statistic). · 

If a water quality data series is increasing (decreasing) over time, then :xr>XJ 
(x1<Xj) for most pairs and the test statistic will be a large positive (negative) number. 
If the trend in the water quality data series over time is negligible, then the number 
of positive pairs and the number of negative pairs will be essentially equal, and the 
test statistic will be small in absolute value. For small sample sizes (n«O) the 
Mann-Kendall statistic is tabulated in most non parametric statistics texts; .for large 
sample sizes (typical of most applications for water quality trends) a normal 
approximation may be used as shown in the examples in Chapter 3. 

The seasonal Kendall's Tau test yields the same analysis on a seasonal 
basis; with monthly data, we may define a "season" as one month in length. If there 
is distinct seasonal behavior, then the seasonal Kendall's Tau test is a good choice. 
Berryman et al. (1988) or Gilbert (1987) provide useful guidance on the selection 
and· application of tests. 

The Kendall's Tau statistic provides a non parametric assessment of the 
presence or absence of a trend. For a non parametric estimate of the magnitude of 
trend, the Sen or seasonal Kendall slope estimator (Gilbert 1987) are good choices. 
These estimators are based on the median slope from the set of slope estimates for 
the lines connecting all possible pairs of data. 

Finally, it must be noted that the nonparametric tests and statistics are 
appropriate if the parametric assumptions cannot be justified; otherwise, the 
parametric procedures are more powerful. Since the parametric assumptions are 
often questionable with water quality data, and since the ·non parametric approaches 
are almost as effective as the parametric methods when the assumptions are 
correct, it is our belief that non parametric procedures ·Should be routinely used for 
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trend detection (and parametric procedures used only whEm justified). This 
recommendation is based on: (1) concern for the effects of non-normality, (2) 
concern for the effects of occasional outliers in water quality data, (3) the realization 
that non parametric methods are becoming .. standard prE~ctice .. in water quality trend 
detection studies. 
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Chapter3 

Trend Detection in lakes - Examples and Discussion 

3.1. Introduction 

The discussion of basic statistical and graphical methods in Chapter 2 serves 
an important purpose in a comprehensive approach to trend analysis. To be 
specific, it is strongly recommended that certain graphs of the data be examined, 
and that specific statistics be calculated, before the trend detection test is run. In 
most cases, this preliminary analysis provides useful information and possible 
adjustme!'lts to the data that result in improvements in the trend detection test. 
Some examples are: 

1) A bivariate ti~es series graph may indicate P.resence or absence of seasonal 
variation. This helps determine the ·need for seas'orial adjustment and for the · 
seasonal version of the kendail Tau test. . 

2} A bivariate graph of monthly (or weekly) stream inflow versus monthly (or 
weekly) water quality concentration may indicate a flow-effect, particularly in 
lakes with short ·hydraulic detention times. This helps determine the need for a 
flow-concentration model to reduce background variability. 

3) A bivariate time series graph, and/or a histogram for the water quality 
variable, will indicate the presence or absence of extreme observations 
(outliers). This helps determine the need for a transformation and/or for a 
non parametric test of trend. 

4} Seasonal (yearly) boxplots for the water quality variable will show the range, 
median, upper and lower quartiles, and confidence interval for the median, for 
each of the seasons (years} plotted. This can provide a visual indication of the 
presence or absence of trend or seasonality. 

These and other issues are illustrated in examoles below. 

In a parametric test of trend, deterministic features of the water quality time 
series are often accounted for with separate terms for season, streamflow, and 
trend in a regression model. In a nonparametric test, some deterministic features of 
the data (e.g., a flow effect) are modeled with a simple parametric regression model, 
and some deterministic features (e.g., seasonality) are adjusted for in a 
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nonparametric manner. In either case, the analyst would usually like to assume that 
the "unexplained" remainder of the water quality data exlhibit random (white noise) 
behavior. However, autocorrelation, or persistence, in th1e water quality time series 
may still be present. As stated in Section 2.3.2, autocorn~lation indicates that each 
observation in a time series is not independent of other observations. In the most 
common case of lag-one autocorrelation, each observation is correlated with the 
previous observation. This means that some of the information that is conveyed in 
the current observation has already been conveyed in the previous observation. 
Thus, with autocorrelation, we do not have as much information that we believe we 
have on the basis of sample size. 

It is important to consider the nature of the model and the possible causes of 
autocorrelation when examining a data series for autocorrelation. For example, a 
data series with a strong linear trend or seasonal cycle is likely to yield large 
value(s) for autocorrelation at one or more lags. These are apt to reflect the 
deterministic trend, or cycle, and in fact, calculation of autocorrelation is a useful 
diagnostic device for selecting a time series model. However, for the purpose of 
trend detection in water quality analyses, autocorrelation is of interest in the data 
series after all deterministic patterns are removed. When autocorrelation still 
remains at this point in the analysis, then the procedure employed for trend analysis 
must explicitly account for the autocorrelation. · 

3.2. Examples - Background 

The first example involves trends in total phosphorus and total nitrogen in Falls 
Lake, North Carolina. Falls Lake is a 10,700 acre lake located in the north central 
piedmont region of North Carolina. The lake provides flood control, recreation, 
downstream water quality control, fish and wildlife conservation, and water supply 
for the Raleigh area. The North Carolina Division of Environmental Management 
(OEM) collected data from Falls Lake on total phosphorus and totat nitrogen on an 
approximately monthly basis over a five year period from 4/26/83 until 1 0/14/87. 

The flow chart illustrated in Figure 3.1 shows the ouWne of the procedures 
followed in this case study, and should serve as a basic model for other trend 
detection studies. The macros described in this diagram are all found 
in Appendix D. The chart begins with entry of data into a Statistical Analysis System 
(SAS) data set. Various statistical procedures and macro programs are then run, 
depending on the outcome of each step. The final step in the flow chart provides 
information on trend for variables with (or without) seasonality, while ignoring 
autocorrelation. 

The procedures outlined in Figure 3.1 were first run c1n the total phosphorus data . 
set. Sections 3.2 through 3.7 guide the reader through these procedures, using the 
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total phosphorus data set. Following that, section 3.8 presents the results for total 
nitrogen. 

BOX PLOT 
MACRO 

',; 

Figure 3.1 Flow chart for macro programs~ ·.: ·.:, 

To begin, raw data were first entered into a SAS data set containing variables. for 
time (SASdate variable (date)), total phosphorus (TP}, and total nitrogen (TN). The 
date variable was then converted to calendar form and variables for the day, month, 
and year were created for later use. ·Table 3:1 shows the completed data set. 

As suggested earlier, the data sets were analyzed for basic statistical 
information, and histograms and bivariate time series graphs were constructed 
using the macro "Basics" found in Appendix D. The macro was designed to 
calculate measures of central tendency and dispersion, such as those discussed in 
Chapter 2 arid in Appendix A: For those unfamiliar with SAS, Appendix Bcontairis a 
brief introduction on how to run a macro on a new data set With'graphics 
capability (SASGRAPH}, the Basics program will also provide a histogram and 
bivariate time series plot of the data set; otherwise a simple printer plot will be 
drawn. · 

Information from the macro Basics was used to evaluate some·ofthe ·underlying 
assumptions needed to perform further statistical analyses and tests of . 
significance on the data. Specifically, the probability distribution approximated by 
the data (normal, lognormal, ... ), the presence or absence of sea~onal cycles within 
the data, and the dependence of each observation on previous observations·· 
(autocorrelation). The importance of normality and independence is discussed in. 
Section 2.3.2., and seasonality is discussed in Sections 2.4.3. and 2.4.4. Other 
patterns in the data, such as a deterministic flow/concentration relationship, should 
also be considered (depending on lake detention time and reaction rates). In this 
case study, corresponding information on inflow to the lake was not available. For 
the total phosphorus data set used in this case study, the evaluations of normality, 
seasonality,· a·nd independence, are discussed in Sections 3.5 through 3. 7. · 
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3.3. Summary Statistics 

The moments printed under the univariate procedure (Table 3.2) are explained 
in SAS User's Guide: Basics (1989). They contain many of the measures of central 
tendency and dispersion discussed in Appendix A. In addition to the moments, 
quantiles and extreme values are also calculated. The univariate procedure also 
draws a stem and leaf diagram, a box and whiskers plot, and a normal probability 
graph. Figure 3.2 contains these graphs for total phosphorus. All three diagrams 
provide a visual indication of the distribution of the data set, and their construction is 
documented in the SAS User's Guide (1989). 

The skew and kurtosis calculations are documented in most statistics texts, as 
well as in the SAS procedures guide. The test for normality (W statistic) is based 
upon the null hypothesis that the data values are a random sample from a normal 
distribution. The test calculates the Shapiro-Wilk statistic~, W, which must be greater 
than zero and less than or equal to one, with small values of W leading to rejection 
of the null hypothesis. The value for W of .859662 is small enough (indicated by the 
PROS< W of 0.0001) to require us to reject the null hypothesis of a normal 
distribution for the total phosphorus data set. See Gilbert (1987), for further 
discussion of the W statistic. 

The stem and leaf diagram in Figure 3.2 gives an indication that the data set is 
slightly skewed, because of the concentration of data in the lower portion and the 
spread of the upper portion of the diagram. The box and whiskt:!rs plot shows less 
evidence of skew, with the mean and median falling on the same line, and the upper 
whisker just slightly longer than the lower one. However, the two circles above the 
box do indicate that there are values greater than 1.5 times the interquartile range 
from the median, which would indicate a skewed data SE~t (see Appendix A for a 
discussion of interquartil.e range). 

The normal probability plot found in Figure 3.2 is a graph of the probability 
density function. In this figure, the empirical data (the observations) are plotted 
against a standard normal density function with the same (sample) mean and 
standard deviation. The asterisks (*) symbolize the observations; if the data follow a 
normal distribution, then the asterisks will fall in a straight line along the same path 
as the normal function(+ symbols). As Figure 3.2 show~;, the data do not follow a 
normal distribution. 

3.4. Graphical Analyses 

In addition to the diagrams already mentioned, a histogram and a bivariate time 
series graph of the data (including an estimated trend line) are constructed within 
the macro BASICS. In the absence of graphics capability, a simple printer plot of 
the data over time will be drawn as the bivariate graph. With graphics capability, 
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additional macros can be run to provide the user with boxplots of the chosen 
variable. These macros are presented in Appendix D (and in the accompanying 
disk) under the "Boxplt.sas" program listing. The macros are: (1) NOBS, (2) 
ORDER, (3) BOXVARS, and (4) BOXPLOT. Information and examples using these 
macros can be found below and in Appendix D. 

3.4.1. Histogram 

The histogram in Figure 3.3 was constructed according to the procedure 
outlined in Appendix A. The range and other information needed to construct the 
histogram were obtained from an initial run of the univariate procedure. These 
results were then entered into the macro BASICS, to allow for bars of uniform width 
within the given range. The initial run did not specify midpoints of bar widths, which 
can be added as options (see SAS User's Guide, 1989). 

When constructed correctly (for a sample containing bars of equal width, as .. 
outlined in Appendix A), the histogram can also be used to determine the normality 
of a data set. The histogram found in Figure 3.3 provides an informative picture of 
the distribution of total phosphorus data. 

3.4.2. Time Series Graph 

Bivariate time series graphs are discussed in the Appendix. For the case study, 
Figure 3.4 is a bivariate plot of total phosphorus concentration over time. The 
cyclic pattern it displays is an indication of seasonality in the data. The peak values 
occur in spring, and the lowest in the fall of each year. The graph also includes a · 
predicted trend line based on a simple (ordinary least squares) regression of ' · 
concentration over time. It can be used to give an indication of the presence of 
trend, but should not be relied upon because it does not take into account the 
presence of seasonality or autocorrelation. 

3.4.3. Box Plot 

The construction and use of box plots is discussed in Appendix A. Figure 3.5 
presents seasonal box plots for total phosphorus from Falls Lake, with the X-axis as 
the seasonal variable (MONTH), and theY-axis the water quality variable being 
studied. In this figure, a notched box plot is drawn separately for each month. See 
the box and whiskers plot discussion in Appendix A for a more complete description 
of the construction of a box plot. 

When compared vertically, the notches for all of the boxes illustrated in Figure 
3.5 do not overlap. This means that the medians for some seasons (months) are 
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significantly different at an approximate alpha level of 0.05, which is an indication of 
seasonality. Also note that the height of some boxes is larger than that for others. 
This indicates that those months have a greater variability in total phosphorus 
values. 

Figure 3.6 illustrates the yearly box plots for the same data set. The notches of 
these boxes do overl.ap vertically. This means that the yearly median values for 
total phosphorus do not show statistically significant differences at an alpha level of 
0.05. Moreover, the yearly box plots do not show a trend in the median value for 
total phosphorus over the years. Of course, trend in the median value is only one 
trend of interest; the box plots also display trend in extremes (minimum and 
maximum) and trends in variability. 

3.5. Normality 

The importance of normality is discussed in Section 2.3.2. As noted in that 
section, a normal distribution is required for many hypothesis testing procedures 
and for parametric tests of trend. Normality is also required for most tests of · 
autocorrelation; thus a log transformation of the data may be appropriate when 
testing for the presence of autocorrelation. 

The visual image supplied by the histpgram, combined with the information from 
the univariate procedure, led to the conclusion that the total phosphorus data do not 
follow a normal distribution. Thus, the decision to apply a nonparametric 
(distribution free) trend detection method in this case study was based on the lack of 
normality, combined with the presence of missing values. It should be noted that in 
some cases, water quality concentration will be reported at or below a specified 
detection level, reported as a missing value, or will yield a skewed histogram. 
These data sets should either be transformed, or analyzed using a distribution free 
method (such as the one used in this case study). 

3.6. Seasonality 

Figure 3.4 is a bivariate time series graph for total phosphorus. The graph 
indicates the possible presence of seasonality in the data set by the cyclic pattern of 
phosphorus concentration over time. Since the graph indicated the possibility of 
seasonality, the data set was run through the macro "CORR" to construct a 
correlogram and print the autocorrelation values. 

· Autocorrelation (or correlation over time) can be thought of as an indicator of 
persistence in behavior, or how similar one data point (e.g., observation or residual; 
see Section 2.3.2) is to other data points taken at nearby time periods. 
Autocorrelation is expressed in terms of time lags; for example, lag1 autocorrelation 
refers to correlation between data points one sampling period apart. Similarly, lag12 
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autocorrelation refers to correlation between data points twelve sampling periods 
apart. For water quality data, positive lag1 autocorrelation is most common, and 
indicates a persistence in behavior between data points adjacent in time. Likewise, 
a positive lag 12 autocorrelation for monthly water quality data is indicative of cyclical 
behavior that repeats every twelve months {seasonality).· A negative autocorrelation 
at six months lag is also indicative of a twelve-month {seasonal) cycle, as it 
suggests an opposite response {e.g., high chlorophyll in summer and low 
chlorophyll in winter) six months apart. 

A correlogram is a graphical illustration of the autocorrelation values versus the 
lag. The correlogram for total phosphorus, presented in Figure 3. 7, clearly displays 
a twelve month cyclical pattern. The value of .56642 for the lag12 autocorrelation is 
close to the upper limit of significance {0.05 level) of .57692 (which means that it is 
almost.two standard deviations away from a zero autocorrelation value)~ This 
correlogram was constructed according to the equations found in Pankratz {1983}, 
using the raw data set. Recall from the discussion in Chapter 2 that, for tests of 
trend, autocorrelation becomes a concern only after all deterministic patterns 
(including seasonality) are removed. Thus autocorrelation at this point in the 
example should cause no alarm, and in fact aids in the diagnosis of seasonality. 
This issue is treated further in Section 3. 7. · 

The· negative correlations with values six months apart, and strong positive 
correlations with values twelve months apart, shown in Table 3.3 and Figure 3.7, 
imply seasonality in the data set. These indications combined with the time series 
graph (Figure 3.4) demonstrate a .clear picture of the presence of seasonality in total 
phosphorus. Thus, any trend detection method used must account for or remove 
the effects of seasonality in order to get an accurate measure of trend in the data. 

3.7. Independence 

As noted in the discussion in Section 2.3.2, violation of the independence 
assumption for tests of trend refers not to the raw water quality data, but to the 
residuals left after the removal of all identified deterministic patterns, including 
seasonality and trend. Thus, to properly select and apply the test for trend, the 
analyst must first model and remove the very trend that he\she is trying to estimate. 
The objective of this task is to assess the independence assumption, so that the 
appropriate trend test may be chosen. 

Figure 3.8 presents the sequence of data analyses leading to the selection and 
application of the test for trend. Starting from the top of the figure, the analyst is 
guided through a set of questions and statistical analyses intended to remove all 
known deterministic features from the original water quality data series. Once this is 
completed, the data\residuals are tested for autocorrelation. If autocorrelation is 
rejected, then the standard Kendall test is applied for trend; if autocorrelation is not 
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rejected, then the autocorrelation-corrected Kendall test is used. See the discussion 
of independence in Section 2.3.2 for the explanation of this strategy for analysis. · 

Large (relative to the 0.05 significance level) positive values for lag1 and lag2 
autocorrelations (after the removal of seasonality and any trend from the data) are 
the most common indicators of serial correlation. Since these lag values represent 
observations one or two months away from the observation in question, they may 
be related to lake detention time. In examining the correlogram for autocorrelation, 
rules-of-thumb adopted here are to: 

• look at the general shape of the correlogram for detenninistic patterns (e.g., is seasonality still 
evident?) that might have been missed in earlier analyses, 

• consider that autocorrelation will be positive and will occur only at lag!, lag2, or lagl2, if at 
all, 

• use the 0.05 significance level for autocorrelation as the cutoff for presence/absence of serial 
correlation. 

These rules are suggested to help avoid misinterpreting the correlogram. Many 
autocorrelations are presented simultaneously in a correlogram, so some are apt to 
appear significant (0.05 level) purely by chance. Faulty inferences can be minimized 
by taking advantage of expectations concerning water quality data. For example, 
autocorrelation is expected to be positive (indicating persistence associated with a 
common unexplained phenomena) and to be highest at low lags (indicating month­
to-month persistence) and/or highest at annual lags (indicating year-to-year 
persistence). Other .. significant .. autocorrelations will generally be assumed to be by 
chance and thus ignored. 

To remove seasonality and trend in order to check for the presence of 
autocorrelation; the data set was first run through the macro .. KENS .. , which makes 
use of the .. Kendall .. Fortran .program. This macro determines the seasonal Kendall 
Tau test statistic, the significance of that statistic (with and without a correction for 
the covariance caused by autocorrelation), and the seasonal Sen slope estimate for 
the trend. Table 3.4 contains these values for the total phosphorus data set. The 
formulas used in the calculation of these statistics are documented in Hirsch and 
Slack (1984). 

The seasonal Sen slope estimate was then used with the seasonal median to 
deseasonalize and detrend the data, in the macro .. ADJUSr'. It should be noted 
that the median value (as opposed to the mean value} was used to provide 
resistance to outliers. The macro program detrended the data by subtracting the 
trend line estimated using the seasonal Sen value for slope (see Appendices Band 
D, ADJUST macro, for the formula used}. The output from the macro ADJUST was 
then run through the macro CORR (the .. corradj.sas .. program) again, to construct a 
correlogram from the deseasonalized, detrended data. This correlogram was then 
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used to test for autocorrelation (see Figure 3.9). Recall thatthis is the procedure 
outlined in Figure 3.8. 

The values for the adjusted (deseasonalized, detrended) lag1 and Jag2 
correlations for total phosphorus are 0.10560 and 0.16765, respectively (see Table 
3.5). Both of these are well within the significance limit (0.05 level), indicating there 
was no serial correlation within the data set based on the stated rules-of-thumb. 
This means that tests of significance using the seasonal Kendall Tau test statistic 
will be run without a correction for serial correlation. 

The presence of serial correlation in data (or residuals} results in violation of the 
assumption of independence required for most statistical trend detection tests. 
Thus, if autocorrelation is found, the test must be adjusted or the autocorrelation 
eliminated. One possibility for elimination is to aggregate data, or reduce the 
frequency of sampling, from monthly to bimonthly or quarterly. In most cases this 
will eliminate serial correlation. However, the corresponding reduction in sample 
number means that data must be collected over a longer time period in order to 
account for the loss in statistical power. 

The test used in the macro KENS has a correction for the covariance caused by 
serial correlation (calculated according to Hirsch and Slack 1984). The macro 
KENS is designed to calculate this correction, and report how it ·influences the 
significance of the seasonal Kendall Tau test statistic in terms of a p-value. Thus, if 
the data (or residuals) being analyzed exhibit serial correlation, the p-value of 
interest is that reported with serial correlation; if there is no serial correlation in the 
data (or residuals) choose the p-value without the corre·ction. 

Table 3.4 presents the output from the KENS macro, and as was noted above, 
the P-vatue of interest for total phosphorus is the one without correction for serial 
correlation. The particular values reported for this case study are discussed in the 
next section. 

3.8. Trend Detection in Total Phosphorus 

The method of trend detection used in the macro KENS found in Appendix 8 is a 
variation of the Mann-Kendall test discussed earlier in Section 2.4.4. The 
program performs a seasonal variation of the test, with an optional correction for 
serial correlation. The test can be used when the following conditions hold: 

( 1) the data set contains over 40 observations. (If the data set does not contain 
over 40 observations, a simple Mann-Kendall test should be run) (see Gilbert 1987, 
for the calculations). 

(2) the data set exhibits seasonality. 
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The Seasonal Kendall test is non parametric, so it allows for the presence of 
missing values and does not require a normal distribution. The total phosphorus 
data set contained over 40 observations, did not appear to be normally distributed, 
exhibited seasonality, and the residuals did not indicate lag1 autocorrelation. Thus, 
we decided to use the information from the macro KENS without correction for serial 
correlation. 

As mentioned in Section 3.7, results from the Seasonal Kendall Test on total 
phosphorus calculated using the macro KENS are shown in Table ,3.4. The 
formulas for deriving these statistics can be found in Gilb~~rt (1987), Hirsch et 
al. (1982), or Hirsch and Slack (1984). In this case study we chose a significance 
(alpha) level of 0.05. 

The negative value of -0.29787 for the Tau test statistic indicates there is a 
negative trend in total phosphorus. As stated in Hirsch ef: al. (1982), the distribution 
of this statistic should be normal if the null hypothesis is true. The P-value of 
.013974 indicates that the trend is significant at an alpha (significance) level of 0.05. 
This value represents the probability of Z values for the test statistic at least as 
extreme as the one actually calculated from the observed values, if the null 
hypothesis of no trend was true. 

The Z statistic provides a measure indicating the position of the Tau test statistic 
on a normal probability distribution table. It is based on the null hypothesis of 
no trend in the data, which would give the statistic a normal probability distribution. 
Hence, large (absolute) values of Z, and consequently small values of P, lead one to 
reject the null hypothesis of no trend. It should be noted here that the output from 
the macro reports only the P-value associated with the calculated Z statistic. 

The KENS macro program also calculates the seasonal Kendall-Sen slope 
estimator for the data set. This value is the seasonal equivalent to Sen's 
nonparametric estimate of slope. It is the median of all possible slopes generated 
between all possible pairs of data points. The value for slope in this case is 
-0.0033333 units/year. 

Thus, the conclusion for total phosphorus in Falls Lake is one of a slight (slope= 
0.0033333 mg/1-year) decreasing trend. This trend is significant at the 0.05 level, 
and is distinct from the seasonal cycle in the data. 

3.9. Total Nitrogen 

The data set for total nitrogen from Falls Lake was analyzed in the same 
manner as was the total phosphorus data set (described in Sections 3.1 through 
3.8). However, the results for total nitrogen were slightly different. 
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3.9.1. Normality 

Table 3.6 contains the SAS PROC univariate tables from the macro Basics, and 
Figure 3.10 presents the corresponding plots. The stem and leaf diagram, box and 
whiskers plot, and normal probability graph all indicate that the data do not foliow a 
normal distribution. This is reinforced by a W statistic for normality of 0.90432, with 
an accompanying probability of 0.0002 (see Ta,ble 3.6). This indicates a ~02 percent 
probability of finding a W statistic as small or smaller than the one observed if the 
null hypothesis (a normal distribution) is true. Finally, the histogram constructed in 
Figure 3.11 confirms the lack of normality in the total nitrogen data. 

3.9.2. Seasonality 

The monthly box plots illustrated in Figure 3.12 show a strong pattern of 
seasonality. The notches do not overlap for several of the boxes, and the boxes 
themselves show a cyclical pattern. The lack of overlap between the notches 
indicates a statistically significant difference (approximate 0.051evel) between some 
pairs of median monthly values for total nitrogen. 

The correlogram constructed in Figure 3.13 shows significant (0.05 level) 
correlation at several of the lag values. A cyclic pattern is evident, with the most 
significant negative correlation occurring at lag6 and significant positive correlation 
at lag 12. The bivariate time series graph in Figure 3.14 also shows strong seasonal 
cycles in the data. 

3.9.3. Independence 

After deseasonalizing and detrending the data as explained in Section 3.6, a 
correlogram was constructed using the values from the adjusted data set (Figure 
3.15). For this new data set, there were no significant (0.051evei) values for 
autocorrelation. This means that the tests of significance on the trend test statistic 
are valid without a correction for serial correlation. 

3.9.4. Trends in Total Nitrogen 

Table 3.7 contains the output from the Seasonal Kendall test for trend i!1 total 
nitrogen. A synopsis of the statistical information calculated for the total nitrogen 
data set showed that the data set: 

(1) contained missing values 
(2) did not follow a normal distribution 
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(3) contained seasonal cycles, and 
(4) did not show serial correlation. 

Therefore, the P-value without serial correlation for the Tau statistic of -0.042553 is 
the chosen indicator of significance in the trend. The reported P-value for the Tau 
statistic in this case was 0.69530, which is quite unlikely to be associated with a 
trend. In effect, this P-value means that the probability of getting a Z value as 
extreme or more extreme as that observed is .695, given that the null hypothesis of 
no trend is true. 

3.1 0. Conclusions from the Phosphorus and Nitrogen Examples 

While the total phosphorus and total nitrogen ·data sets did show similarities in 
distribution, seasonality, and independence, they differed in trend. Total 
phosphorus displayed a slight {but statistically significant at the 0.05 level) 
downward trend over the years studied. Total nitrogen did not show any statistically 
significant trend. 

3.11. Regional and Statewide Lake Analysis 

3.11.1. Introduction 

Tests of statistical significance {hypothesis tests) ;are usually run so that they 
are to be interpreted individually. This means, for example, that ''the trend in pH in 
Lake A is significantly different from zero at the 0.05 level" is a permissible 
statement. However, the statements should not be made1 collectively or 
simultaneously without appropriate adjustments. That is, we cannot say that "Lakes 
A, B, and C all have upward trends in pH that are simultaneously significant at the 
0.051evel," unless the individual significance level is adjusted downward {e.g., 
0.05/3), or the test is explicitly designed for multiple comparisons. 

An alternative to either individual or simultaneous statem~nts of statistical 
significance are "collective" statements. These statements may be expressed as 
"the trend in pH in the sampled population of lakes is significantly different from zero 
at the 0.051evel." Collective statements of statistical inference may be made using 
meta-analysis {Hedges and Olkin 1985}, which is, literally, the statistical analysis of 
statistics. In this case, we can perform a meta-analysis on the seasonal Kendall's 
Tau statistics or the seasonal Kendall slope estimates forr all of the lakes in the 
sample to draw collective conclusions concerning the sample. 
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3.11.2. Tests of Significance 

Once the trend analysis presented above is run. for each lake of interest, 
meta-analysis can be applied to these results to make a collective statement . 
concerning regional trends: The lake statistics used in this example of meta-analysis 
are hypothetical; they were created to illustrate the relatively simple calculations 
necessary to make regional inferenqes concerning trends in lake water quality. The 
statistics represent estimated p-values that could result from the same seasonal 
Kendall trend detection test illustrated above. 

This example uses the trend detection results from 10 hypothetical lakes to 
make a collective statement about trend for all of the lakes. This particular example 
of meta-analysis uses a method of adding Z scores (standard normal deviates) to 
combine probabilities; several other statistical methods may also be used as shown 
in Rosenthal (1984) and in Hedges and Olkin. Information on the hypothetical. 
lakes, along with the formula used for the meta-analysis, is presented in Table 3.8. 

The results of the meta-analysis in Table 3.8 indicate that even though three 
of the sample lakes do not show statistically significant (0.05 level) trends, there is 
collectively a statistically significant trend for the lakes as a whole. The highly 
significant Z (Z= 6.49) for the meta-analysis is due to the influence of all of the 
trends being in the same direction (i.e., all have a positive Z score), most of which 
are statistically significant (at alpha= 0.05). 

Table 3.8 Lake Information And Meta-Analytic Formula . . 

Lake 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

sum 
mean 
median 

Number Qf Observations 
60 

120 
100 
·12 
84 
60 
72 

120 
60 
84 

p-value 
+ 0.013974 
+ 0.002460 
+ 0.012367 
+ 0.106785 
+ 0.965324 
+ 0.014672 
+ 0.003671 
+ 0.005968 
+ 0.026861 
+ 0.546129 
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Z-score 
+2.45 
+3.02 
+2.50 
+1.61 
+0.04 
+2.43 
+2.90 
+2.75 
+2.21 
+0.60 

+20.51 
+2.05 
+2.44 



The meta-analytic method of adding Z's (standard normal deviates) uses the 
following simple formula to calculate the test statistic: 

Z=~=~=6.49 
[fi .f1o 

The resultant Z-statistic (6.49) is compared to a table of standard normal deviates to 
assess its significance. 
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Appendix A: Basic Descriptive Statistics 

Measures of Central Tendency 

Probably the single most useful statistic summarizing a data set is an 
indication of the center of the sample. "Center'' suggests the vague notion of the 
middle of a cluster of data points of perhaps the region of greatest concentration of 
data. Since samples of data exhibit a variety of distributions when plotted as 
histograms, it is not possible to unambiguously define the center, and as a result 
there are several statistical estimators that serve as candidates for determining 
central tendency or location. Each candidate, as noted below, may be considered to 
have its own advantages and disadvantages for the task at hand. 

Mean (arithmetic) 

The arithmetic mean, or simply, the mean, is the most frequently used of the 
central tendency estimators. It is so commonly used that the scientist often loses 
sight of the true reason for calculating descriptive statistics. The result is that the 
mean is sometimes calculated as the central tendency statistic in situations where 
another estimator would be better. 

The arithmetic mean (x) is the sum of the observations (>G) divided by the 
number of observations (n): 

I:x1 
X=-n- (A1) 

Each observation contributes its magnitude to the sum of the observations and 
hence to the mean. For symmetric distributions (like the normal or Gaussian 
distribution), the mean calculated from a sample of data (the sample mean) often 
comes quite close to the center, or peak, of the histogram for that sample. However, 
limnological data are often not symmetrically distributed. The extremely high or 
extremely low observations characteristic of skewed data distributions "pull" the 
mean in the direction of the skew; this means that a few extremely high 
observations can pull the mean away from the bulk of the observations and toward 
the few high data points. In those situations, a resistant estimator, like the median or 
the mode, might be preferred. 

Median 

When a set of data is ordered from lowest to highest value, the median is 
identified as the middle value. The median is therefore known as an "order statistic" 
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since it is based on an ordering or ranking of observations. When the total number 
of observations is an even number, leading to two middle values, the median is then 
the average of the two middle values. 

The "order" of the median observation is: 

Median Observation = (n + 1)/2 (A2) 

Since the effect on the median of all but the middle-ranking observations is simply to 
hold a place in the ranking, outlying observations do not pull the median toward the 
extremes. The median is resistant to the influence of any single observation, and 
thus it is a good statistic to use when the histogram is skewed or unusually shaped. 

Trimmed Mean 

The trimmed mean is the mean value from a subsample of the original 
sample. The subsample is formed by symmetrically trimming a small percentage of 
the data points from either end of the ordered observa1tions. For example, a 1 0% 
trimmed mean is calculated from the subsample remaining after the highest and 
lowest 1 0% of the observations are removed from the data set. At the extreme, the 
median is the trimmed mean with all but the middle observation removed. 

The trimmed mean is a good (efficient) choice for central tendency when 
censoring occurs or when a few outlying observations are found in the data. Here, 
censoring refers to data points reported as "below detE~ction limits." In that case, if 
15% of the data points are below detection limits, then a 15% trimmed mean 
estimator (involving 15% trimming from each end) should have lower bias than the 
arithmetic mean estimator based on all uncensored observations. 

Mode 

The mode is the value in the sample that is most frequently observed. For 
water quality concentration data on a continuous scalel of milligrams per liter, it is 
possible that no value is repeated more than once. In that case, the mode may not 
be a useful estimator. Alternatively, if a histogram is used to represent a data set, 
the mode is defined as that range of values associated with the tallest bar on the 
histogram. The mode is considered a good estimator for central tendency because 
the most frequently observed value is usually near the center of the distribution. An 
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examination of a histogram for the sample will indicate whether the mode actually 
does correspond with the center. 

Geometric Mean 

The geometric mean is the antilog of the mean of logarithmically-transformed 
observations. Therefore, it is a reasonable measure of central tendency for a set of 
data that exhibit a lognormal distribution. The lognormal data distribution is skewed 
in the original units of measurement, but it is normal (Gaussian} when the original 
measurements are log-transformed. The lognormal distribution has been suggested 
by several investigators as a good probability model for concentration data for 
environmental contaminants. Data sets described by the lognormal have a few high 
values that are somewhat extreme from the bulk of the observations. 

The geometric mean may be calculated in two ways: 

Geometric Mean= antilog ( 'LI~<x1>c) (A3} 

or: 

1 
Geometric Mean = [TIX)] n (A4} 

where TIX;= X1 •X2 •X3 • ... •Xn. 

Measures of Dispersion 

Other than central tendency, measures of dispersion or spread are the most 
commonly cited statistics used to summarize a data set. Dispersion in a data set 
refers to the variability in the observations about the center of the distribution. Good 
measures of dispersion will be obtained from symmetric distributions. Asymmetry, or 
skewness, will affect the estimate of dispersion so that it overestimates spread in 
the shorter tail of the data distribution (while underestimating the spread in the 
longer tail}. A transformation (e.g., log transform} should be considered in cases of 
asymmetry in order to create a symmetric distribution in the transformed metric. 
Statistics are then calculated on the basis of the transformed metric. 
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Standard Deviation 

The most commonly used statistic for dispersion is the standard deviation. 
Like the mean, the standard deviation has been used so often that it sometimes is 
thought to be equivalent in definition to dispersion. In fact, like the mean, the 
standard deviation is strongly affected by extreme values .. Thus, the standard 
deviation for a distribution of data with a long tail to the ri~Jht is inflated by the values 
at the extreme right. It may be preferable to apply a transformation to create a 
symmetric distribution before calculating the standard deviation. 

For a sample, the sample variance (s2) is: 

(A5} 

and the sample standard deviation (S) is the square root of the variance ( J$2) . 

Absolute Deviation 

The standard deviation is based on squared error; squaring the deviation 
between a data point and the sample mean increases the1 influence of the largest 
and smallest observations on the estimate of deviation. To reduce the influence of 
outliers on the dispersion statistic, the absolute deviation should be considered. To 
calculate an absolute deviation, the mean (or median} is first estimated, and then 
the absolute value of the difference between the mean (median} and each data 
point is calculated. The mean (or median} of these absolute deviations is then 
calculated and is called the mean (median} absolute deviation. 

lnterguartile Range 

Since the standard deviation is unduly influenced by extreme observations in 
both symmetric and asymmetric distributions of data, a retsistant alternative to the 
standard deviation (like the median is to the mean} is neetded for situations in which 
the data are skewed but a transformation is undesirable. Fortunately a good 
alternative exists - the interquartile range. Like the median, the interquartile ·range is 
based on order statistics, and thus it is unaffected by the magnitude of the extreme 
observations in either tail. It is calculated as the difference between the observation 
at the 75%ile (upper quartile} and the observation at the :25%ile (lower quartile}: 

Lower quartile rank order= (1/2}(1 +median rank order) 
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Upper quartile rank order= (1/2)(1 + n +lower quartile rank) 

lnterquartile range= I =lower quartile value- upper quartile value 

Range 

An easily determined and therefore frequently cited measure of dispersion is 
the range. The range is simply the maximum value minus the minimum value. Since 
it is clearly affected by the magnitude of the observations at either extreme, the 
range should not be relied upon as the sole indicator of variability. Nonetheless, it is 
often informative to list the range along with one of the other two dispersion 
statistics mentioned above. 

Graphical Analyses 

It is good practice in statistical analysis to begin a study with a graphical 
display of the data. That is, before descriptive statistics are calculated from a data 
set, and before the data are statistically analyzed for trend, it is wise to look at 
selected graphical displays of the data. Many of the graphs recommended for this 
task are useful in identifying important patterns in the data or in identifying the need 
to transform the data prior to analysis. If inferences drawn from analysis of the data 
are to correctly represent actual behavior, then it is important that any summary 
statistics used to draw inferences are representative of the data set. The graphical 
displays help guide the choice of any necessary manipulations of the data and 
selection of statistics and statistical tests. · 

Graphs can also be useful during the course of a statistical study. For 
example, bivariate plots are helpful in identifying seasonal patterns or examini'ng the 
relationship between inflow and concentration. Upon completion of the statistical 
analysis, the scientist often wisely chooses to present some of the results in 
graphical form. Not infrequently, conclusions are most effectively conveyed in a 
graphical display. 

Histograms 

In even the simplest of limnological studies, data on a single characteristic 
need to be analyzed. Likewise, in a simple trend analysis of a single water quality 
variable, it is often useful to examine the distribution of the data in order to assess 
the central values, variability, and extremes. The limnologist could calculate the 
mean, standard deviation, minimum, and maximum of the sample data set; 
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alternatively, he could calculate other statistics representing central tendency and 
dispersion. Prior to calculating any statistics for the sample, however, the scientist 
should first look at a plot of the data. For data representing a single characteristic 
(such as total phosphorus concentration), the histogram is often a useful graphical 
display. 

As an example, data on total phosphorus concentration from 1982-1988 in 
Jordan Lake (North Carolina) are to be analyzed for trend, but first the scientist 
would like to summarize the entire data set with a few statistics (perhaps to present 
on a graph of the time series). To obtain one picture of the sample to aid in the 
selection of statistics, the scientist plots the histogram shc>wn in Figure A 1. To 
construct the histogram, the scientist must first divide the range (highest value to 
lowest value) into equal-sized intervals. In Figure A1, the range is approximately 
0.030mg/1 to 0.200mg/l and is divided into intervals of 0.01 Omg/1. For each interval, 
0.030 to 0.040, 0.040 to 0.050, and so on, simply count the number of data points 
that lie in the interval and construct vertical bars with height proportional to that 
number. So, for example, there are two observations in the 0.070 to 0.080 range 
and three observations in the 0.080 to 0.090 range. Thus, the bar for the 0.080 to 
0.090 interval is 1.5 times the height of the 0.070 to 0.08(1 bar. 

What does the histogram tell us about the sample? Basically, it provides us 
with a visual image of the distribution of data points in the sample. In specific terms, 
this means that we are able to quickly see such things as location of the "center" of 
the sample, amount of "dispersion," extent of "symmetry,'' and existence of "outliers" 
in the sample. In Figure A 1,.the center appears to be benveen 0.030mgll and 
0.060mg/l, depending on choice of central tendency statistic (e.g., mode, median, 
mean). Dispersion could perhaps be characterized by stating that over 75% of the 
observations lie between 0.030mg/l and 0.060mg/l, although this does not indicate 
the obvious skew in the data. The histogram clearly displays one outlying point 
which should be checked as a valid data point. 

The picture created by the histogram is of considerable value in the selection 
of descriptive statistics. Some care should be observed in the construction of the 
histogram, however. With changes in interval size (e.g., changing' interval width from 
0.010mg/l to 0.020mg/l), the histogram may assume different shapes which might 
affect the inferences drawn. 

As noted above, the histogram provides an impression of the extent of 
symmetry in the sample. Symmetry in a data set is a desirable attribute for two 
reasons. First, it often means that one can characterize the sample as having a 
distribution with a shape similar to those symmetric distributions (e.g., the normal 
and uniform distributions) which are commonly an assumption of statistical analysis. 
Stating, for example, that a sample approximates the normal distribution conveys 
useful information to a reader. Beyond that, symmetry implies that the common 
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descriptive statistics such as the mean and standard deviation can be used to 
provide an adequate summary of the sample. 

The foregoing discussion suggests that it might be useful to apply a 
transformation, if necessary, in order to create symmetry in an asymmetric data set. 
Fortunately, limnological data are often approximately log normally distributed, so 
there Is an obvious choice for transformation. The lognormal distribution is strictly 
positive {all observations > 0), and it is skewed right. As an example, the Jordan 
Lake total phosphorus data in Figure A 1 approximately fit this description. To check 
for lognormality, the logarithmic transformation is applied to the data, and a 
histogram of the transformed data is plotted in Figure A2. Comparison of this 
histogram with a normal distribution (i.e., a bell-shaped clJlrve) provides a rough test 
of lognormality; formal tests do exist (e.g., Kolmogorov-Srnirnov test or chi-square 
test) and may be found in many statistics texts. 

The difference between Figure A 1 and Figure A2 mustrates how a 
transformation may change the shape of a histogram. While the log-transformation 
in Figure A2 did not achieve symmetry of the original data plotted in Figure A 1, it did 
alter the histogram shape. To be specific, the logarithmic transformation tends to 
"spread out" observations that are low in value and "sque13ze in" observations that 
are high in value. As a result of this effect, the outlier in Fi!~ure A2 is not as separate 
from the bulk of the observations as it is in Figure A 1. 

Through the study of the histograms of the sample, we should be in a better 
position to determine descriptive statistics for the data and to make inferences from 
the data. 

Bivadate~ 

In time trend analysis, the basic relationship of conGern is the bivariate 
relation between concentration of a contaminant and time. Many statistics (e.g., 
correlation coefficients) and many statistical methods (e.g., regression analysis) are 
also fundamentally concerned with relationships between pairs of variables. Without 
question, the single best way to examine a relationship between pairs of variables is 
through a bivariate graph. 

For example, a bivariate graph of the time series for the Jordan Lake data 
discussed above is shown in Figure A3. This graph provides some indication of 
trend, variability, seasonality, and outliers. While this picto~rial impression is clearly 
helpful, it must be recognized that certain patterns (e.g., seasonality) can be 
masked by the background variability; this is shown in some of the examples that 
follow in this manual. Figure A3 displays one outlier (which suggests either a 
transformation or nonparametric methods in subsequent statistical analyses), but no 
clear graphical evidence of seasonality or trend. In later se!ctions, we see if these 
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conclusions are maintained when time series methods are employed to examine the 
data . 

.B.Qx.and. Whisker~ 

Multiple observations, predictions, or residuals of a single water quality 
variable can be effectively analyzed graphically using a box and whisker plot. Box 
and whisker plots are based on order statistics {statistics determined based on the 
ordering of observations from lowest to highest value). For a data set, or for 
comparison of two or more data sets, the box and whisker plots display information 
on the sample median, dispersion, skew, relative size of the data set, and statistical 
significance of the median. 

The SAS macros presented in this manual, SAS PROC UNIVARIATE {which 
produces small, un-notched plots), or the steps (from Reckhow and Chapra 1983) 
below may be followed to construct a box and whisker plot for a single variable: 

1. Order the data from lowest to highest. 

2. Plot the lowest and highest values on the gr~ph as short horizontal lines. These 
represent the extreme values for each box and whisker plot. ' 

3. Determine the upper and lower quartiles for the data set. {The quartiles are the 
values at the 25th and 75th percentiles.) These values define the positions of the · 
upper and lower edges of the box. Using vertical lines, connect the highest value· 
with the upper quartile and the lowest value with the lower quartile. 

4. Plot the median as a dashed horizontal line within the box. 

5. Select a scale so that the width of the box represents the $ample size. For 
example, each centimeter of width could represent 25 observations. 

6. determine the height of the notch (in the box at the median) based on the 
statistical significance of the median. Based on work by McGill et al. (1978), the 
height of the notch above and below th·e median is approximately: 

Notch Limits= Median±(1.5711 /if) 

where: 

I = interquartile range = upper quartile - lower quartile 

n =sample size 
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With this mathematical definition of the notch limits, the notch in the box provides an 
approximate 95% confidence interval for comparison of box medians. Therefore, 
when the notches for any two boxes overlap in a vertical sense, .the medians are not 
significantly different at about the 5% level. 

As an example, Figure A4 presents two box and whisker plots for a water 

Indicates Statistical Significance 
at 0.05 Level (for Median 

i•oo.oouuoooooooo 

i .................. .: 

-..;..--- .Maximum Value 

)7S%'Value 

-···············-~ Median Value 

L---.----' 25%Value 

-..1--- Minimum Value 

Lake A Lake B 

Figure A4. Box and whisker plots. 

quality variable of interest measured in two lakes. The graph provides information 
on: 

1. An estimate of the median concentration in each lake 

2. A measure of dispersion in the concentration {the interquartile range} 

3. The range (highest concentration -lowest concentration}, and an indication of 
skew {based on lack of symmetry in the box shape above and below the median}. 
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For a study ofthe concentrations from two or more samples (e.g., each year could 
represent a sample in a time series), the scientist can display: 

1. A statistical test of significance in the difference between the two medians, 
based on vertical overlap_ between notches 

2. A visual comparison between the two samples, based simply on observing the 
similarities and differences between features of two box and whisker plots. 

Note that the notches in Figure A4 do not overlap in a vertical sense, indicating 
that the medians are significantly different at the 5% level. 

Spline Smoothing 

A spline smoother is a nonparametric regression estimator that may describe 
a locally-persistent pattern in a data set. In a graphical presentation, the spline is a 
smoothly-curving line that describes the general patterns in the data. It is similar to a 
moving average, in that it provides a local fit at each point. However, all data points 
in the local"window" are not weighted equally; data closest to the point of fit are 
assigned the highest weights. 

At one extreme, a straight-line regression model is the outcome from spline 
smoothing; at the other extreme, the spline will zig-zag through every data point. In 
between the two extremes are literally an infinite number of compromises of these 
two fits. The SAS spline function in PROC GPLOT may be used to produce a graph 
of the spline smooth; with a smoothing parameter of about 0.5, the graph from 
GPLOT may be quite informative in displaying trend and seasonal pattern. 
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Appendix B: Introduction to SAS Macros 

The computer functions in this manual make use of the SAS macro processing 
language. Macros are separate programs within the SAS system that can be used 
to simplify repetitive data entry tasks. The macro processing language allows the 
user to change input variables in a program that performs a given function, without 
having to rewrite the entire function. The programs can be stored separately from 
other SAS functions, and can be invoked at any time within a given program. Thus, 
the user can store programs that perform basic (or complicated) functions outside a 
given program, then invoke them to be used when needed. 

Macros are invoked by the use of a percent sign(%), and the variables within the 
program are preceded by an ampersand(&). Each macro program has its own 
name, and can be invoked simply by writing (%)followed by the name of the 
macro. Each of the variables used in the macro {denoted by the"&" preceding 
them) is then defined in parentheses; for example, see the third page of Appendix 
0, where the macro "Basics" is being called. Notice that each of the variables 
defined in the program (found on the second page of Appendix D) must be assigned 
a value in order for the program to run. Comments at the beginning of each macro 
explain the purpose of the macro and list the variables that must be defined for that 
macro to run. 

In order to run the macros used in this case study, the user must be familiar with 
the data set being analyzed. The information needed to run the macros can be 
found in the comment section at the beginning of each macro program. Comments 
are separated from program language by a row of star (*) symbols. All of the macros 
require a time variable, in the form of a SAS date variable. The SAS User's Guide: 
Basics (1989) gives information on how to enter or convert dates into a SAS form. 
Some of the macros require information on the number of observations and the 
number of seasons per year. 

The SAS macros found in Appendix D were designed to give the user a 
framework for the detection of trends in water quality constituents. They can (and in 
many cases should) be modified to suit the users needs. This appendix covers four 
issues that users need to be familiar with, and is designed for the inexperienced 
macro user. The four issues discussed are as follows: 

( 1) Preparation of the data set. 
(2) Naming of macro variables. 
(3) Saving files from a macro for later use. 
(4) Graphics modification. 
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The macros themselves are found in Appendix D, and many of the references 
will be to specific lines of text within the macro. There are comments throughout 
each of the macros that are designed to let the user know what function is being 
performed. These comments are always preceded by an asterisk (*), and are in 
most cases self-explanatory. 

Data Preparation 

For the macro programs to run properly, the data setl3 must be in a form the SAS 
system can read. Actual data set entry is described in detail in the SAS User's 
Guide: Basics (1989), and should provide the user with the information needed to 
transform variables (such as date) into SAS variables. ()nee SAS has the variables 
in a data set, they can be modified as needed for each macro. · 

The only requirements to start the macro Basics are: a data set name, a date 
variable (representing sequential time), the variables to be studied, a title to print on 
output pages, and whether or not your machine has graphics capabilities . · 
(SASGRAPH). Each of these requirements is explained in the comments found at 
the beginning of the macro Basics. To further assist the first.:time user, we will 
explain how we prepared the data set for the total phosphorus case study. 

The data for Falls Lake came from the North Carolina Division of Environmental 
Management (OEM). It was part of a larger data set containing Information on many 
water quality variables. We chose to export the date variable, total phosphorus, 
total nitrogen, and observation number. 

All of the variables in the data set were in a form that the SAS system could read, 
so they did not have to be transformed prior to entering them into a SAS data set. 
The date was in numeric form, with a start date of January 1, 1960 equal to 1, and 
all subsequent days were numerically ordered from this point (earlier dates would 
have negative values moving back in time from 1/1/60). This is the same start date 
as the SAS date variable; thus the date variable did not require transformation. 

Naming of Macro Variables 

Each of the macros run requires the user to list namE~s for the variables to be 
used within a given run. The variables that require names are listed in parentheses 
directly after the macro name. These variables are also· explained in the comment 
section at the beginning of each macro program. 

The actual naming process occurs inside parenthesets immediately following the 
calling of a macro program. For example, the naming of the variables for the macro 
program Basics can be seen on page 4 of Appendix D. Here, the data set to be 
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used is FALLS; the variable to be examined is TP; the time variable is called DATE; 
the title of the program is FALLS TEST DATA; and the program does have graphics 
capability. Each of the macro variables requested is explained in the comment 
section found on the second page of Appendix D. 

The variable names chosen must be identical to an existing variable name in the 
data set being used. However, the variable names used can change each time the 
program is run, as illustrated in the difference between the two correlation macro 
programs found in Appendix D. There is no difference between these two macro 
programs; they simply use different variables to run the tests. The first CORR 
program uses the F.f\LLS.data set and the TP variable, while the second used th~ 
newly created C.ADJUST data set and ADJUSTED variable. 

Saving Files 

. As wit~ any ~A~· pmgr?m, ifthe user creates a data set to make it permanent, 
the new data s~t must have a two level SAS name. Thus, the new data set created 
in the ADJUST program is designated C.ADJUST, so that it can be used for· later 
pmgrams~ If the ~s,er is inte~~sted only in creating. temporary files, then t~e two . ., . 
level designation found in many of the macros is not necessary. 

The macros for this case study were run in a Batch mbde, on a machine that did 
not have expanded memory. Therefore, many of the temporary data sets needed 
for subsequent macro programs had to be stored outside the SAS-PC system. We. 
used a "C. name" to designate them. The user is referred to the SAS User's Guide: 
Basics (1989) for further explanation of saving' data sets. 

Graphics 
'. 

The system used in this case study included the SASGRAPH program for 
graphics. Hence, the designation of "YES" for the graphics option in each of the 
macros. The user is referred to her/his specific system for details on device name 
and the other specifics for the graphics system. It should be noted that the macros 
allow considerable room for graphics modification, and should be adapted to suit the 
needs of the user. 

If "NO" is designated for the graphics option, the program will still give the user a 
few basic graphical illustrations of the data set. The only option omitted is the 
bivariate time series graph, which is replaced by a printer plot of the data over time. 
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